Previous |  Up |  Next

Article

Keywords:
fuzzy set; fuzzy order relation; complete lattices; monotone map; fixed point
Summary:
A fuzzy version of Tarski’s fixpoint Theorem for fuzzy monotone maps on nonempty fuzzy compete lattice is given.
References:
[1] Beg I.: Fixed points of fuzzy monotone maps. Arch. Math. (Brno) 35 (1999), 141–144. MR 1711740 | Zbl 1047.03044
[2] Beg I.: Fixed points of fuzzy multivalued mappings with values in fuzzy orders sets. J. Fuzzy Math. 6(1) (1998), 127–131. MR 1609883
[3] Beg I.: Fixed points of expansive mapping on fuzzy preordered sets. J. Fuzzy Math. 7(2) (1999), 746–749. MR 1697747
[4] Billot A.: Economic theory of fuzzy equilibria. Lecture Notes in Econom. and Math. Systems 373, Springer-Verlag, Berlin 1992. MR 1227785 | Zbl 0758.90008
[5] Fang J. X.: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets and Systems 46 (1992), 107–113. MR 1153595 | Zbl 0766.54045
[6] Hadzic O.: Fixed point theorems for multivalued mapping in some classes of fuzzy metric spaces. Fuzzy Sets and Systems 29 (1989), 115–125. MR 0976292
[7] Heilpern S.: Fuzzy mapping and fixed point theorem. J. Math. Anal. Appl. 83 (1981), 566–569. MR 0641351
[8] Tarski A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285–309. MR 0074376 | Zbl 0064.26004
[9] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353. MR 0219427 | Zbl 0139.24606
Partner of
EuDML logo