Article
Keywords:
fuzzy set; fuzzy order relation; complete lattices; monotone map; fixed point
Summary:
A fuzzy version of Tarski’s fixpoint Theorem for fuzzy monotone maps on nonempty fuzzy compete lattice is given.
References:
[2] Beg I.:
Fixed points of fuzzy multivalued mappings with values in fuzzy orders sets. J. Fuzzy Math. 6(1) (1998), 127–131.
MR 1609883
[3] Beg I.:
Fixed points of expansive mapping on fuzzy preordered sets. J. Fuzzy Math. 7(2) (1999), 746–749.
MR 1697747
[4] Billot A.:
Economic theory of fuzzy equilibria. Lecture Notes in Econom. and Math. Systems 373, Springer-Verlag, Berlin 1992.
MR 1227785 |
Zbl 0758.90008
[5] Fang J. X.:
On fixed point theorems in fuzzy metric spaces. Fuzzy Sets and Systems 46 (1992), 107–113.
MR 1153595 |
Zbl 0766.54045
[6] Hadzic O.:
Fixed point theorems for multivalued mapping in some classes of fuzzy metric spaces. Fuzzy Sets and Systems 29 (1989), 115–125.
MR 0976292
[7] Heilpern S.:
Fuzzy mapping and fixed point theorem. J. Math. Anal. Appl. 83 (1981), 566–569.
MR 0641351
[8] Tarski A.:
A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285–309.
MR 0074376 |
Zbl 0064.26004