Previous |  Up |  Next

Article

Keywords:
endomorphisms; multiplication modules; comultiplication modules
Summary:
Let $R$ be a ring with an identity (not necessarily commutative) and let $M$ be a left $R$-module. This paper deals with multiplication and comultiplication left $R$-modules $M$ having right $\operatorname{End}_R(M)$-module structures.
References:
[1] Anderson, W., Fuller, K. R.: Rings and categories of modules. Springer-Verlag, New York-Heidelberg-Berlin, 1974. MR 0417223 | Zbl 0301.16001
[2] Ansari-Toroghy, H., Farshadifar, F.: The dual notion of multiplication modules. Taiwanese J. Math. (to appear). MR 2348561 | Zbl 1137.16302
[3] Bae, Soon-Sook: On submodule inducing prime ideals of endomorphism ring. East Asian Math. 16 (1) (2000), 33–48.
[4] Choi, C. W.: Multiplication modules and endomorphisms. Math. J. Toyama Univ. 18 (1995), 1–8. MR 1369692 | Zbl 0876.13001
[5] Choi, C. W., Smith, P. F.: On endomorphisms of multiplication modules. J. Korean Math. Soc. 31 (1) (1994), 89–95. MR 1269453 | Zbl 0820.13003
[6] Faith, C.: Algebra II: Ring theory. Springer-Verlag, New York-Heidelberg-Berlin, 1976. MR 0427349
[7] Ghorbani, A., Haghang, A.: Generalized Hopfian modules. J. Algebra 255 (2002), 324–341. DOI 10.1016/S0021-8693(02)00124-2 | MR 1935502
[8] Haghang, A., Vedali, M. R.: Modules whose injective endomorphism are essential. J. Algebra 243 (2001), 765–779. DOI 10.1006/jabr.2001.8851 | MR 1850657
[9] Lomp, Ch. E.: Prime elements in partially ordered groupoid applied to modules and Hopf algebra actions. J. Algebra Appl. 4 (1) (2005), 77–98. DOI 10.1142/S0219498805001022 | MR 2130464
Partner of
EuDML logo