Previous |  Up |  Next

Article

Keywords:
superspace; sigma models; hyperkähler geometry
Summary:
This is a brief review of how sigma models in Projective Superspace have become important tools for constructing new hyperkähler metrics.
References:
[1] Alvarez-Gaumé L., Freedman D. Z.: Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model. Comm. Math. Phys. 80, 443 (1981). MR 0626710
[2] Arai M., Kuzenko S. M., Lindstrom U.: Hyperkaehler sigma models on cotangent bundles of Hermitian symmetric spaces using projective superspace. JHEP 0702, 100 (2007), [arXiv:hep-th/0612174]. MR 2318051
[3] Buscher T., Lindstrom U., Roček M.: New supersymmetric sigma models with Wess-Zumino terms. Phys. Lett. B 202, 94 (1988). MR 0930852
[4] Galperin A. S., Ivanov E. A., Ogievetsky V. I., Sokatchev E. S.: Harmonic Superspace. Cambridge University Press (UK) (2001), 306 p. MR 1865518 | Zbl 1152.81001
[5] Gates S. J., Hull C. M., Roček M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B 248, 157 (1984). MR 0776369
[6] Gates S. J., Jr., Kuzenko S. M.: The CNM-hypermultiplet nexus. Nuclear Phys. B 543, 122 (1999), [hep-th/9810137]. MR 1686128 | Zbl 0958.81179
[7] Gonzalez-Rey F., Roček M., Wiles S., Lindstrom U., von Unge R.: Feynman rules in $N = 2$ projective superspace. I: Massless hypermultiplets. Nuclear Phys. B 516, 426 (1998), [arXiv:hep-th/9710250]. MR 1630237
[8] Gonzalez-Rey F., von Unge R.: Feynman rules in $N = 2$ projective superspace. II: Massive hypermultiplets. Nuclear Phys. B 516, 449 (1998), [arXiv:hep-th/9711135]. MR 1630233 | Zbl 0977.81141
[9] Gonzalez-Rey F.: Feynman rules in $N = 2$ projective superspace. III: Yang-Mills multiplet. arXiv:hep-th/9712128.
[10] Grundberg J., Lindstrom U.: Actions for linear multiplets in six-dimensions. Class. Quant. Grav. 2, L33 (1985). MR 0786559
[11] Gualtieri M.: Generalized complex geometry. Oxford University DPhil thesis, [arXiv:math.DG/0401221]. MR 2811595 | Zbl 1235.32020
[12] Hitchin N. J., Karlhede A., Lindstrom U., Rocek M.: Hyperkahler metrics and supersymmetry. Comm. Math. Phys. 108, 535 (1987). MR 0877637
[13] Hitchin N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54 (2003), No. 3, 281–308, [arXiv:math.DG/0209099]. MR 2013140 | Zbl 1076.32019
[14] Ivanov I. T., Roček M.: Supersymmetric sigma models, twistors, and the Atiyah-Hitchin metric. Comm. Math. Phys. 182, 291 (1996), [arXiv:hep-th/9512075]. MR 1447294 | Zbl 0882.32014
[15] Karlhede A., Lindstrom U., Roček M.: Selfinteracting tensor multiplets in $N=2$ superspace. Phys. Lett. B 147, 297 (1984). MR 0769049
[16] Karlhede A., Lindstrom U., Roček M.: Hyperkahler manifolds and nonlinear supermultiplets. Comm. Math. Phys. 108, 529 (1987). MR 0877636
[17] Kuzenko S. M.: Projective superspace as a double-punctured harmonic superspace. Internat. J. Modern Phys. A 14, 1737 (1999), [arXiv:hep-th/9806147]. MR 1686416 | Zbl 0938.81039
[18] van Nieuwenhuizen P.: General theory of coset manifolds and antisymmetric tensors applied to Kaluza-Klein supergravity. Published in Trieste School 1984:0239.
[19] Kuzenko S. M.: Extended supersymmetric nonlinear sigma-models on cotangent bundles of Kähler manifolds: Off-shell realizations, gauging, superpotentials. Talks given at the University of Munich, Imperial College, and Cambridge University (May–June, 2006).
[20] Lindström U., Ivanov I. T., Roček M.: New $N=4$ superfields and sigma models. Phys. Lett. B 328, 49 (1994). [arXiv:hep-th/9401091]. MR 1288922
[21] Lindström U., Kim B. B., Roček M.: The nonlinear multiplet revisited. Phys. Lett. B 342, 99 (1995) [arXiv:hep-th/9406062]. MR 1314388
[22] Lindström U., Roček M.: Scalar tensor duality and $N=1$, $N=2$ nonlinear sigma models. Nuclear Phys. B 222, 285 (1983). MR 0710273
[23] Lindström U., Roček M.: New hyperkahler metrics and new supermultiplets. Comm. Math. Phys. 115, 21 (1988). MR 0929144
[24] Lindström U., Roček M.: $N=2$ Superyang-Mills theory in projective superspace. Comm. Math. Phys. 128, 191 (1990). MR 1042450
[25] Lindström U., Roček M., von Unge R., Zabzine M.: Generalized Kaehler manifolds and off-shell supersymmetry. arXiv:hep-th/0512164. Zbl 1114.81077
[26] Lindström U., Roček M., von Unge R., Zabzine M.: Linearizing generalized Kaehler geometry. arXiv:hep-th/0702126.
[27] Zumino B.: Supersymmetry and Kahler manifolds. Phys. Lett. B 87, 203 (1979).
Partner of
EuDML logo