[1] Alvarez-Gaumé L., Freedman D. Z.:
Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model. Comm. Math. Phys. 80, 443 (1981).
MR 0626710
[2] Arai M., Kuzenko S. M., Lindstrom U.:
Hyperkaehler sigma models on cotangent bundles of Hermitian symmetric spaces using projective superspace. JHEP 0702, 100 (2007), [arXiv:hep-th/0612174].
MR 2318051
[3] Buscher T., Lindstrom U., Roček M.:
New supersymmetric sigma models with Wess-Zumino terms. Phys. Lett. B 202, 94 (1988).
MR 0930852
[4] Galperin A. S., Ivanov E. A., Ogievetsky V. I., Sokatchev E. S.:
Harmonic Superspace. Cambridge University Press (UK) (2001), 306 p.
MR 1865518 |
Zbl 1152.81001
[5] Gates S. J., Hull C. M., Roček M.:
Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B 248, 157 (1984).
MR 0776369
[6] Gates S. J., Jr., Kuzenko S. M.:
The CNM-hypermultiplet nexus. Nuclear Phys. B 543, 122 (1999), [hep-th/9810137].
MR 1686128 |
Zbl 0958.81179
[7] Gonzalez-Rey F., Roček M., Wiles S., Lindstrom U., von Unge R.:
Feynman rules in $N = 2$ projective superspace. I: Massless hypermultiplets. Nuclear Phys. B 516, 426 (1998), [arXiv:hep-th/9710250].
MR 1630237
[8] Gonzalez-Rey F., von Unge R.:
Feynman rules in $N = 2$ projective superspace. II: Massive hypermultiplets. Nuclear Phys. B 516, 449 (1998), [arXiv:hep-th/9711135].
MR 1630233 |
Zbl 0977.81141
[9] Gonzalez-Rey F.: Feynman rules in $N = 2$ projective superspace. III: Yang-Mills multiplet. arXiv:hep-th/9712128.
[10] Grundberg J., Lindstrom U.:
Actions for linear multiplets in six-dimensions. Class. Quant. Grav. 2, L33 (1985).
MR 0786559
[11] Gualtieri M.:
Generalized complex geometry. Oxford University DPhil thesis, [arXiv:math.DG/0401221].
MR 2811595 |
Zbl 1235.32020
[12] Hitchin N. J., Karlhede A., Lindstrom U., Rocek M.:
Hyperkahler metrics and supersymmetry. Comm. Math. Phys. 108, 535 (1987).
MR 0877637
[13] Hitchin N.:
Generalized Calabi-Yau manifolds. Q. J. Math. 54 (2003), No. 3, 281–308, [arXiv:math.DG/0209099].
MR 2013140 |
Zbl 1076.32019
[14] Ivanov I. T., Roček M.:
Supersymmetric sigma models, twistors, and the Atiyah-Hitchin metric. Comm. Math. Phys. 182, 291 (1996), [arXiv:hep-th/9512075].
MR 1447294 |
Zbl 0882.32014
[15] Karlhede A., Lindstrom U., Roček M.:
Selfinteracting tensor multiplets in $N=2$ superspace. Phys. Lett. B 147, 297 (1984).
MR 0769049
[16] Karlhede A., Lindstrom U., Roček M.:
Hyperkahler manifolds and nonlinear supermultiplets. Comm. Math. Phys. 108, 529 (1987).
MR 0877636
[17] Kuzenko S. M.:
Projective superspace as a double-punctured harmonic superspace. Internat. J. Modern Phys. A 14, 1737 (1999), [arXiv:hep-th/9806147].
MR 1686416 |
Zbl 0938.81039
[18] van Nieuwenhuizen P.: General theory of coset manifolds and antisymmetric tensors applied to Kaluza-Klein supergravity. Published in Trieste School 1984:0239.
[19] Kuzenko S. M.: Extended supersymmetric nonlinear sigma-models on cotangent bundles of Kähler manifolds: Off-shell realizations, gauging, superpotentials. Talks given at the University of Munich, Imperial College, and Cambridge University (May–June, 2006).
[20] Lindström U., Ivanov I. T., Roček M.:
New $N=4$ superfields and sigma models. Phys. Lett. B 328, 49 (1994). [arXiv:hep-th/9401091].
MR 1288922
[21] Lindström U., Kim B. B., Roček M.:
The nonlinear multiplet revisited. Phys. Lett. B 342, 99 (1995) [arXiv:hep-th/9406062].
MR 1314388
[22] Lindström U., Roček M.:
Scalar tensor duality and $N=1$, $N=2$ nonlinear sigma models. Nuclear Phys. B 222, 285 (1983).
MR 0710273
[23] Lindström U., Roček M.:
New hyperkahler metrics and new supermultiplets. Comm. Math. Phys. 115, 21 (1988).
MR 0929144
[24] Lindström U., Roček M.:
$N=2$ Superyang-Mills theory in projective superspace. Comm. Math. Phys. 128, 191 (1990).
MR 1042450
[25] Lindström U., Roček M., von Unge R., Zabzine M.:
Generalized Kaehler manifolds and off-shell supersymmetry. arXiv:hep-th/0512164.
Zbl 1114.81077
[26] Lindström U., Roček M., von Unge R., Zabzine M.: Linearizing generalized Kaehler geometry. arXiv:hep-th/0702126.
[27] Zumino B.: Supersymmetry and Kahler manifolds. Phys. Lett. B 87, 203 (1979).