Previous |  Up |  Next

Article

Keywords:
conformal geometry; ambient metric; jet isomorphism; deformation complex
Summary:
Jet isomorphism theorems for conformal geometry are discussed. A new proof of the jet isomorphism theorem for odd-dimensional conformal geometry is outlined, using an ambient realization of the conformal deformation complex. An infinite order ambient lift for conformal densities in the case in which harmonic extension is obstructed is described. A jet isomorphism theorem for even dimensional conformal geometry is formulated using the inhomogeneous ambient metrics recently introduced by the author and K. Hirachi.
References:
[1] Bailey T. N., Eastwood M. G., Graham C. R.: Invariant theory for conformal and CR geometry. Ann. of Math. (2) 139 (1994), 491–552. MR 1283869 | Zbl 0814.53017
[2] Branson T., Gover A. R.: Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature. Comm. P.D.E. 30 (2005), 1611–1669, arXiv:math/0309085. MR 2182307 | Zbl 1226.58011
[3] Calderbank D. M. J., Diemer T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103, arXiv:math/0001158. MR 1856258 | Zbl 0985.58002
[4] Čap A., Gover A. R.: Standard tractors and the conformal ambient metric construction. Ann. Global Anal. Geom. 24 (2003), 231–259, arXiv:math/0207016. MR 1996768 | Zbl 1039.53021
[5] Čap A., Slovák J., Souček V.: Bernstein-Gelfand-Gelfand sequences. Ann. of Math. (2) 154 (2001), 97–113. MR 1847589
[6] Eastwood M. G., Graham C. R.: Invariants of conformal densities. Duke Math. J. 63 (1991), 633–671. MR 1121149 | Zbl 0745.53007
[7] Epstein D.: Natural tensors on Riemannian manifolds. J. Differential Geom. 10 (1975), 631–645. MR 0415531 | Zbl 0321.53039
[8] Fefferman C.,: Parabolic invariant theory in complex analysis. Adv. Math. 31 (1979), 131–262. MR 0526424 | Zbl 0444.32013
[9] Fefferman C., Graham C. R.: Conformal invariants. in The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque, 1985, Numero Hors Serie, 95–116. MR 0837196
[10] Fefferman C., Graham C. R.: The ambient metric. arXiv:0710.0919.
[11] Gasqui J., Goldschmidt H.: Déformations Infinitésimales des Structures Conformes Plates. Prog. Math. 52, Birkhäuser, 1984. MR 0776970 | Zbl 0585.53001
[12] Gover A. R.: Invariant theory and calculus for conformal geometries. Adv. Math. 163 (2001), 206–257. MR 1864834 | Zbl 1004.53010
[13] Gover A. R., Peterson L. J.: The ambient obstruction tensor and the conformal deformation complex. Pacific J. Math. 226 (2006), 309–351, arXiv:math/0408229. MR 2247867 | Zbl 1125.53010
[14] Graham C. R., Hirachi K.: Inhomogeneous ambient metrics. IMA Vol. Math. Appl. 144: Symmetries and Overdetermined Systems of Partial Differential Equations, Springer, to appear, arXiv:math/0611931. MR 2384722 | Zbl 1148.53023
[15] Graham C. R., Hirachi K.: Ambient realization of conformal jets and deformation complex. in preparation.
[16] Hirachi K.: Construction of boundary invariants and the logarithmic singularity of the Bergman kernel. Ann. of Math. (2) 151 (2000), 151–191, arXiv:math/0010014. MR 1745015
[17] Lepowsky J.: A generalization of the Bernstein-Gelfand-Gelfand resolution. J. Algebra 49 (1977), 496–511. MR 0476813 | Zbl 0381.17006
Partner of
EuDML logo