Previous |  Up |  Next

Article

Keywords:
contractions; Lie algebras; affine algebraic groups; affine group schemes
Summary:
Degenerations, contractions and deformations of various algebraic structures play an important role in mathematics and physics. There are many different definitions and special cases of these notions. We try to give a general definition which unifies these notions and shows the connections among them. Here we focus on contractions of Lie algebras and algebraic groups.
References:
[1] Agaoka Y.: An algorithm to determine the isomorphism classes of 4-dimensional complex Lie algebras. Linear Algebra Appl. 345 (2002), 85–118. MR 1883269 | Zbl 0998.17002
[2] Borel A.: Lienar Algebraic Groups. Graduate Texts in Mathematics, 126, Springer-Verlag, New York (1991), 1–288. MR 1102012
[3] Burde D.: Degenerations of nilpotent Lie algebras. J. Lie Theory 9 (1999), 193–202. MR 1679999 | Zbl 1063.17009
[4] Burde D., Steinhoff C.: Classification of orbit closures of $4$–dimensional complex Lie algebras. J. Algebra 214 (1999), 729–739. MR 1680532 | Zbl 0932.17005
[5] Burde D.: Degenerations of $7$-dimensional nilpotent Lie Algebras. Commun. Algebra 33, No. 4 (2005), 1259–1277. MR 2136700 | Zbl 1126.17011
[6] Carles R., Diakité Y.: Sur les variétés d’algèbres de Lie de dimension $\le 7$. J. Algebra 91 (1984), 53–63. MR 0765770 | Zbl 0546.17006
[7] Daboul C.: Deformationen und Degenerationen von Lie Algebren und Lie Gruppen. Dissertation (1999), Universität Hamburg.
[8] Gerstenhaber M., Schack S. D.: Relative Hochschild cohomology, rigid Lie algebras and the Bockstein. J. Pure Appl. Algebra 43, No. 1 (1986), 53–74. MR 0862872
[9] Grunewald F., O’Halloran J.: A characterization of orbit closure and applications. J. Algebra 116 (1988), 163–175. MR 0944153 | Zbl 0646.17002
[10] Hartshorne R.: Algebraic Geometry. Graduate Texts in Mathematics, 52 (1977). MR 0463157 | Zbl 0367.14001
[11] Inönü E., Wigner E. P.: On the contraction of groups and their representations. Proc. Natl. Acad. Sciences USA 39 (1953), 510–524. MR 0055352 | Zbl 0050.02601
[12] Lauret J.: Degenerations of Lie algebras and Geometry of Lie groups. Differ. Geom. Appl. 18, No. 2 (2003), 177–194. MR 1958155
[13] Nesterenko M., Popovych R.: Contractions of low-dimensional Lie algebras. J. Math. Phys. 47 (2006), no. 12, 123515, 45 pp. arXiv:math-ph/0608018 (2006). MR 2285164 | Zbl 1112.17007
[14] Segal I. E.: A class of operator algebras determined by groups. Duke Math. J. 18 (1951), 221–265. MR 0045133
Partner of
EuDML logo