[1] Agaoka Y.:
An algorithm to determine the isomorphism classes of 4-dimensional complex Lie algebras. Linear Algebra Appl. 345 (2002), 85–118.
MR 1883269 |
Zbl 0998.17002
[2] Borel A.:
Lienar Algebraic Groups. Graduate Texts in Mathematics, 126, Springer-Verlag, New York (1991), 1–288.
MR 1102012
[4] Burde D., Steinhoff C.:
Classification of orbit closures of $4$–dimensional complex Lie algebras. J. Algebra 214 (1999), 729–739.
MR 1680532 |
Zbl 0932.17005
[5] Burde D.:
Degenerations of $7$-dimensional nilpotent Lie Algebras. Commun. Algebra 33, No. 4 (2005), 1259–1277.
MR 2136700 |
Zbl 1126.17011
[6] Carles R., Diakité Y.:
Sur les variétés d’algèbres de Lie de dimension $\le 7$. J. Algebra 91 (1984), 53–63.
MR 0765770 |
Zbl 0546.17006
[7] Daboul C.: Deformationen und Degenerationen von Lie Algebren und Lie Gruppen. Dissertation (1999), Universität Hamburg.
[8] Gerstenhaber M., Schack S. D.:
Relative Hochschild cohomology, rigid Lie algebras and the Bockstein. J. Pure Appl. Algebra 43, No. 1 (1986), 53–74.
MR 0862872
[9] Grunewald F., O’Halloran J.:
A characterization of orbit closure and applications. J. Algebra 116 (1988), 163–175.
MR 0944153 |
Zbl 0646.17002
[11] Inönü E., Wigner E. P.:
On the contraction of groups and their representations. Proc. Natl. Acad. Sciences USA 39 (1953), 510–524.
MR 0055352 |
Zbl 0050.02601
[12] Lauret J.:
Degenerations of Lie algebras and Geometry of Lie groups. Differ. Geom. Appl. 18, No. 2 (2003), 177–194.
MR 1958155
[13] Nesterenko M., Popovych R.:
Contractions of low-dimensional Lie algebras. J. Math. Phys. 47 (2006), no. 12, 123515, 45 pp. arXiv:math-ph/0608018 (2006).
MR 2285164 |
Zbl 1112.17007
[14] Segal I. E.:
A class of operator algebras determined by groups. Duke Math. J. 18 (1951), 221–265.
MR 0045133