Previous |  Up |  Next

Article

Keywords:
locally Lipschitz transformation group; Hilbert-Smith conjecture
Summary:
In this paper we show that a “locally Lipschitz” locally compact transformation group acting continuously and effectively on a connected paracompact locally Euclidean topological manifold is a Lie group. This is a contribution to the proof of the Hilbert-Smith conjecture. It generalizes the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Repovš-Ščepin Theorem [17] which holds only for Riemannian manifolds.
References:
[1] Bochner S., Montgomery D.: Locally compact groups of differentiable transformations. Ann. of Math. (2) 47 (1946), 639–653. MR 0018187 | Zbl 0061.04407
[2] Bourbaki N.: Topologie générale, Chap. 1-4. Hermann, Paris 1971. MR 0358652
[3] Bredon G. E., Raymond F., Williams R. F.: $p$-Adic transformation groups. Trans. Amer. Math. Soc. 99 (1961), 488–498. MR 0142682
[4] Dieudonne J.: Foundations of modern analysis. Academic Press, New York–London 1960. MR 0120319 | Zbl 0100.04201
[5] Dress A.: Newman’s theorems on transformation groups. Topology, 8 (1969), 203–207. MR 0238353 | Zbl 0176.53201
[6] Federer H.: Geometric measure theory. Springer-Verlag, Berlin–Heidelberg–New York, N.Y., 1969. MR 0257325 | Zbl 0176.00801
[7] Hofmann K. H., Morris S. A.: The structure of compact groups. de Gruyter Stud. Math. 25 (1998). MR 1646190 | Zbl 0919.22001
[8] Karube T.: Transformation groups satisfying some local metric conditions. J. Math. Soc. Japan 18, No. 1 (1966), 45–50. MR 0188342 | Zbl 0136.43801
[9] Kuranishi M.: On conditions of differentiability of locally compact groups. Nagoya Math. J. 1 (1950), 71–81. MR 0038355 | Zbl 0037.30502
[10] Michael G.: On the smoothing problem. Tsukuba J. Math. 25, No. 1 (2001), 13–45. MR 1846867 | Zbl 0988.57014
[11] Montgomery D.: Finite dimensionality of certain transformation groups. Illinois J. Math. 1 (1957), 28–35. MR 0083680 | Zbl 0077.36702
[12] Montgomery D., Zippin L.: Topological transformation groups. Interscience Publishers, New York, 1955. MR 0073104 | Zbl 0068.01904
[13] Nagami K. R.: Mappings of finite order and dimension theory. Japan J. Math. 30 (1960), 25–54. MR 0142101 | Zbl 0106.16002
[14] Nagami K. R.: Dimension-theoretical structure of locally compact groups. J. Math. Soc. Japan 14, No. 4 (1962), 379–396. MR 0142679 | Zbl 0118.27001
[15] Nagami K. R.: Dimension theory. Academic Press, New York, 1970. MR 0271918 | Zbl 0224.54060
[16] Nagata J.: Modern dimension theory. Sigma Ser. Pure Math. 2 (1983). Zbl 0518.54002
[17] Repovš D., Ščepin E. V.: A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps. Math. Ann. 308 (1997), 361–364. MR 1464908 | Zbl 0879.57025
[18] Yang C. T.: p-adic transformation groups. Michigan Math. J. 7 (1960), 201–218. MR 0120310 | Zbl 0094.17502
Partner of
EuDML logo