[1] Bochner S., Montgomery D.:
Locally compact groups of differentiable transformations. Ann. of Math. (2) 47 (1946), 639–653.
MR 0018187 |
Zbl 0061.04407
[2] Bourbaki N.:
Topologie générale, Chap. 1-4. Hermann, Paris 1971.
MR 0358652
[3] Bredon G. E., Raymond F., Williams R. F.:
$p$-Adic transformation groups. Trans. Amer. Math. Soc. 99 (1961), 488–498.
MR 0142682
[6] Federer H.:
Geometric measure theory. Springer-Verlag, Berlin–Heidelberg–New York, N.Y., 1969.
MR 0257325 |
Zbl 0176.00801
[7] Hofmann K. H., Morris S. A.:
The structure of compact groups. de Gruyter Stud. Math. 25 (1998).
MR 1646190 |
Zbl 0919.22001
[8] Karube T.:
Transformation groups satisfying some local metric conditions. J. Math. Soc. Japan 18, No. 1 (1966), 45–50.
MR 0188342 |
Zbl 0136.43801
[9] Kuranishi M.:
On conditions of differentiability of locally compact groups. Nagoya Math. J. 1 (1950), 71–81.
MR 0038355 |
Zbl 0037.30502
[11] Montgomery D.:
Finite dimensionality of certain transformation groups. Illinois J. Math. 1 (1957), 28–35.
MR 0083680 |
Zbl 0077.36702
[12] Montgomery D., Zippin L.:
Topological transformation groups. Interscience Publishers, New York, 1955.
MR 0073104 |
Zbl 0068.01904
[13] Nagami K. R.:
Mappings of finite order and dimension theory. Japan J. Math. 30 (1960), 25–54.
MR 0142101 |
Zbl 0106.16002
[14] Nagami K. R.:
Dimension-theoretical structure of locally compact groups. J. Math. Soc. Japan 14, No. 4 (1962), 379–396.
MR 0142679 |
Zbl 0118.27001
[16] Nagata J.:
Modern dimension theory. Sigma Ser. Pure Math. 2 (1983).
Zbl 0518.54002
[17] Repovš D., Ščepin E. V.:
A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps. Math. Ann. 308 (1997), 361–364.
MR 1464908 |
Zbl 0879.57025