Previous |  Up |  Next

Article

Keywords:
$S$-Noetherian ring; generalized power series ring; anti-Archimedean multiplicative set; $S$-finite ideal
Summary:
Let $R$ be a commutative ring and $S\subseteq R$ a given multiplicative set. Let $(M,\le )$ be a strictly ordered monoid satisfying the condition that $0\le m$ for every $m\in M$. Then it is shown, under some additional conditions, that the generalized power series ring $[[R^{M,\le }]]$ is $S$-Noetherian if and only if $R$ is $S$-Noetherian and $M$ is finitely generated.
References:
[1] Anderson D. D., Kang B. G., Park M. H.: Anti-archimedean rings and power series rings. Comm. Algebra 26 (1998), 3223–3238. MR 1641603 | Zbl 0912.13008
[2] Anderson D. D., Dumitrescu T.: $S$-Noetherian rings. Comm. Algebra 30 (2002), 4407–4416. MR 1936480 | Zbl 1060.13007
[3] Brookfield G.: Noetherian generalized power series rings. Comm. Algebra 32 (2004), 919–926. MR 2063789 | Zbl 1062.16049
[4] Kang B. G., Park M. H.: A localization of a power series ring over a valuation domain. J. Pure Appl. Algebra 140 (1999), 107–124. MR 1693896 | Zbl 0971.13012
[5] Liu Zhongkui: Endomorphism rings of modules of generalized inverse polynomials. Comm. Algebra 28 (2000), 803–814. MR 1736764 | Zbl 0949.16026
[6] Ribenboim P.: Noetherian rings of generalized power series. J. Pure Appl. Algebra 79 (1992), 293–312. MR 1167578 | Zbl 0761.13007
[7] Ribenboim P.: Rings of generalized power series II: units and zero-divisors. J. Algebra 168 (1994), 71–89. MR 1289092 | Zbl 0806.13011
[8] Ribenboim P.: Special properties of generalized power series. J. Algebra 173 (1995), 566–586. MR 1327869 | Zbl 0852.13008
[9] Ribenboim P.: Semisimple rings and von Neumann regular rings of generalized power series. J. Algebra 198 (1997), 327–338. MR 1489900
[10] Varadarajan K.: Noetherian generalized power series rings and modules. Comm. Algebra 29 (2001), 245–251. MR 1842494 | Zbl 1005.16043
[11] Varadarajan K.: Generalized power series modules. Comm. Algebra 29 (2001), 1281–1294. MR 1842412 | Zbl 0988.16035
Partner of
EuDML logo