Article
Keywords:
$S$-Noetherian ring; generalized power series ring; anti-Archimedean multiplicative set; $S$-finite ideal
Summary:
Let $R$ be a commutative ring and $S\subseteq R$ a given multiplicative set. Let $(M,\le )$ be a strictly ordered monoid satisfying the condition that $0\le m$ for every $m\in M$. Then it is shown, under some additional conditions, that the generalized power series ring $[[R^{M,\le }]]$ is $S$-Noetherian if and only if $R$ is $S$-Noetherian and $M$ is finitely generated.
References:
[1] Anderson D. D., Kang B. G., Park M. H.:
Anti-archimedean rings and power series rings. Comm. Algebra 26 (1998), 3223–3238.
MR 1641603 |
Zbl 0912.13008
[2] Anderson D. D., Dumitrescu T.:
$S$-Noetherian rings. Comm. Algebra 30 (2002), 4407–4416.
MR 1936480 |
Zbl 1060.13007
[3] Brookfield G.:
Noetherian generalized power series rings. Comm. Algebra 32 (2004), 919–926.
MR 2063789 |
Zbl 1062.16049
[4] Kang B. G., Park M. H.:
A localization of a power series ring over a valuation domain. J. Pure Appl. Algebra 140 (1999), 107–124.
MR 1693896 |
Zbl 0971.13012
[5] Liu Zhongkui:
Endomorphism rings of modules of generalized inverse polynomials. Comm. Algebra 28 (2000), 803–814.
MR 1736764 |
Zbl 0949.16026
[6] Ribenboim P.:
Noetherian rings of generalized power series. J. Pure Appl. Algebra 79 (1992), 293–312.
MR 1167578 |
Zbl 0761.13007
[7] Ribenboim P.:
Rings of generalized power series II: units and zero-divisors. J. Algebra 168 (1994), 71–89.
MR 1289092 |
Zbl 0806.13011
[8] Ribenboim P.:
Special properties of generalized power series. J. Algebra 173 (1995), 566–586.
MR 1327869 |
Zbl 0852.13008
[9] Ribenboim P.:
Semisimple rings and von Neumann regular rings of generalized power series. J. Algebra 198 (1997), 327–338.
MR 1489900
[10] Varadarajan K.:
Noetherian generalized power series rings and modules. Comm. Algebra 29 (2001), 245–251.
MR 1842494 |
Zbl 1005.16043