Previous |  Up |  Next

Article

Keywords:
infinite linear system; operator of first order difference; Banach algebra with identity; BK space
Summary:
In this paper we define new sequence spaces using the concepts of strong summability and boundedness of index $p>0$ of $r$-th order difference sequences. We establish sufficient conditions for these spaces to reduce to certain spaces of null and bounded sequences.
References:
[1] Maddox I. J.: Infinite matrices of operators. Springer-Verlag, Berlin, Heidelberg and New York, 1980. MR 0568707 | Zbl 0424.40002
[2] de Malafosse B.: Properties of some sets of sequences and application to the spaces of bounded difference sequences of order $\mu $. Hokkaido Math. J. 31 (2002), 283–299. MR 1914961 | Zbl 1016.40002
[3] de Malafosse B.: Sets of sequences that are strongly $\tau $-bounded and matrix transformations between these sets. Demonstratio Math. 36 1 (2003), 155–171. MR 1968499 | Zbl 1037.46008
[4] de Malafosse B.: Variation of an element in the operator of first difference. Novi Sad J. Math. 32 1, (2002), 141–158. MR 1947951
[5] de Malafosse B.: On the set of sequences that are strongly $\alpha $-bounded and $\alpha $-convergent to naught with index $p$. Seminar. Mat. Torino 61 (2003), 13–32. MR 2034596
[6] de Malafosse B.: On matrix transformations and sequence spaces. Rend. Circ. Mat. Palermo (2) 52 (2003), 189–210. MR 2002026 | Zbl 1194.46005
[7] de Malafosse B.: On some BK space. Internat. J. Math. Math. Sci. 28 (2003), 1783–1801. MR 1986671
[8] de Malafosse B.: Calculations on some sequence spaces. Internat. J. Math. Math. Sci. 29–32 (2004), 1653–1670. MR 2085086 | Zbl 1082.46007
[9] de Malafosse B., Malkowsky E.: Sequence spaces and inverse of an infinite matrix. Rend. Circ. Mat. Palermo (2) 51 (2002), 277–294. MR 1916930 | Zbl 1194.46006
[10] de Malafosse B., Malkowsky E.: Matrix transformations in the sets $\chi \left( \overline{N}_{p}\overline{N}_{q}\right) $ where $\chi $ is in the form s$_{\xi }$, or s$_{\xi }^{{{}^{\circ }}}$, or s$_{\xi }^{\left( c\right) }$. Filomat 17 (2003), 85–106.
[11] Malkowsky E.: Linear operators in certain BK spaces. Bolyai Soc. Math. Stud. 5 (1996), 259–273. MR 1432674 | Zbl 0861.40007
[12] Malkowsky E.: Linear operators between some matrix domains. Rend. Circ. Mat. Palermo (2) 68 (2002), 641–655. MR 1975475 | Zbl 1028.46015
[13] Malkowsky E., Parashar S. D.: Matrix transformations in spaces of bounded and convergent difference sequences of order $m$. Analysis 17 (1997), 87–97. MR 1451207 | Zbl 0872.40002
[14] Malkowsky E., Rakočević V.: An introduction into the theory of sequence spaces and measure of noncompactness. Zb. Rad. (Beogr.) 9 (17) (2000), 143–243. MR 1780493
[15] Wilansky A.: Summability through Functional Analysis. North-Holland Math. Stud. 85, 1984. MR 0738632 | Zbl 0531.40008
Partner of
EuDML logo