Previous |  Up |  Next

Article

Keywords:
relative commutator; nilpotent groups; solvable groups; central extensions
Summary:
In this note we determine explicit formulas for the relative commutator of groups with respect to the subvarieties of $n$-nilpotent groups and of $n$-solvable groups. In particular these formulas give a characterization of the extensions of groups that are central relatively to these subvarieties.
References:
[1] Everaert T.: Relative commutator theory in varieties of $\Omega $-groups. J. Pure Appl. Algebra (to appear), preprint arXiv.math. RA/0605305. MR 2311168 | Zbl 1117.08007
[2] Fröhlich A.: Baer-invariants of algebras. Trans. Amer. Math. Soc. 109 (1963), 221–244. MR 0158920 | Zbl 0122.25702
[3] Furtado-Coelho J.: Homology and generalized Baer invariants. J. Algebra 40 (1976), 596–609. MR 0414740 | Zbl 0372.20037
[4] Higgins P. J.: Groups with multiple operators. Proc. London Math. Soc. (1956), 366–416. MR 0082492 | Zbl 0073.01704
[5] Janelidze G., Kelly G. M.: Galois theory and a general notion of central extension. J. Pure Appl. Algebra 97 (1994), 135–161. MR 1312759 | Zbl 0813.18001
[6] Lue A. S.-T.: Baer-invariants and extensions relative to a variety. Proc. Camb. Phil. Soc. 63 (1967), 569–578. MR 0217151 | Zbl 0154.27501
Partner of
EuDML logo