[1] Borceux F.:
When is $\Omega $ a cogenerator in a topos?. Cahiers Topol. Géom. Diff. 16 (1975), 3–15.
MR 0382393 |
Zbl 0311.18006
[2] Borceux F.:
Handbook of Categorical Algebra 3: Categories of Sheaves. Encyclopaedia Math. Appl. 52 (1994).
MR 1315049 |
Zbl 0911.18001
[3] Borceux F.:
A survey of semi-abelian categories. In: Galois theory, Hopf Algebras, and Semi-abelian Categories, Fields Inst. Commun. 43 (2004), 27–60.
MR 2075580 |
Zbl 1067.18010
[4] Borceux F., Bourn D.:
Mal’cev, Protomodular, Homological and Semi-abelian Categories. Math. Appl. 566 (2004).
MR 2044291 |
Zbl 1061.18001
[5] Borceux F., Bourn D.:
Split extension classifier and centrality. to appear in the Proceedings of the Streetfest 2005.
MR 2342823 |
Zbl 1133.18002
[6] Borceux F., Janelidze G., Kelly G. M.:
Internal object actions. Comment. Math. Univ. Carolin. 46 (2005), 235–255.
MR 2176890 |
Zbl 1121.18004
[7] Borceux F., Janelidze G., Kelly G. M.:
On the representability of actions in a semi-abelian category. Theory Appl. Categ. 14 (2005), 244–286.
MR 2182676 |
Zbl 1103.18006
[8] Bourn D.:
Normal functors and strong protomodularity. Theory Appl. Categ. 7 (2000), 206–218.
MR 1766393 |
Zbl 0947.18004
[9] Bourn D.:
A categorical genealogy for the congruence distributive property. Theory Appl. Categ. 8 (2001), 391–407.
MR 1847038 |
Zbl 0978.18005
[10] Bourn D.:
Protomodular aspects of the dual of a topos. Adv. Math. 187 (2004), 240–255.
MR 2074178
[11] Bourn D., Janelidze G.:
Protomodularity, descent and semi-direct products. Theory Appl. Categ. 4 (1998), 37–46.
MR 1615341
[12] Janelidze G., Márki L., Tholen W.:
Semi-abelian categories. J. Pure Appl. Alg. 168 (2002), 367–386.
MR 1887164 |
Zbl 0993.18008
[14] Johnstone P. T.:
Sketches of an Elephant: a Topos Theory Compendium. volumes 1–2, Oxford Logic Guides 43–44 (2002).
MR 1953060 |
Zbl 1071.18002
[15] Mac Lane S.:
Categories for the Working Mathematician. Graduate Texts in Math. No. 5 (1971; revised edition 1998).
Zbl 0232.18001