Article
Keywords:
$C^{*}$-algebras; Jordan algebras; $JB^{*}$-algebras; unitary isotopes
Summary:
By investigating the extent to which variation in the coefficients of a convex combination of unitaries in a unital $JB^{*}$-algebra permits that combination to be expressed as convex combination of fewer unitaries of the same algebra, we generalise various results of R. V. Kadison and G. K. Pedersen. In the sequel, we shall give a couple of characterisations of $JB^{*}$-algebras of $tsr\ 1$.
References:
[1] Jacobson N.:
Structure and representations of Jordan algebras. AMS Providence, Rhode Island, 1968.
MR 0251099 |
Zbl 0218.17010
[2] Kadison R. V., Pedersen G. K.:
Means and convex combinations of unitary operators. Math. Scand. 57 (1985), 249–266.
MR 0832356 |
Zbl 0573.46034
[4] Siddiqui A. A.: Positivity of invertibles in unitary isotopes of $JB^{*}$-algebras. Preprint.
[6] Siddiqui A. A.:
$JB^{*}$-algebras of $tsr\ 1$. Preprint.
Zbl 1227.46036
[8] Youngson M. A.:
A Vidav theorem for Banach Jordan algebras. Math. Proc. Cambridge Philos. Soc. 84 (1978), 263–272.
MR 0493372 |
Zbl 0392.46038