Previous |  Up |  Next

Article

Keywords:
tight; weakly tight; weakly injective; countably thick; locally q.f.d.; weakly semisimple
Summary:
The purpose of this paper is to further the study of countably thick modules via weak injectivity. Among others, for some classes ${\mathcal M}$ of modules in $ \sigma [M]$ we study when direct sums of modules from ${\mathcal M}$ satisfies a property $\mathbb P$ in $\sigma [M]$. In particular, we get characterization of locally countably thick modules, a generalization of locally q.f.d. modules.
References:
[1] Albu T., Nastasescu C.: Relative finiteness in module theory. Marcel Dekker 1984. MR 0749933 | Zbl 0556.16001
[2] Al-Huzali A., Jain S. K., López-Permouth S. R.: Rings whose cyclics have finite Goldie dimension. J. Algebra 153 (1992), 37–40. MR 1195405
[3] Berry D.: Modules whose cyclic submodules have finite dimension. Canad. Math. Bull. 19 (1976), 1–6. MR 0417244 | Zbl 0335.16025
[4] Brodskii G., Saleh M., Thuyet L., Wisbauer R.: On weak injectivity of direct sums of modules. Vietnam J. Math. 26 (1998), 121–127. MR 1684323
[5] Brodskii G.: Denumerable distributivity, linear compactness and the AB5$^{\ast }$ condition in modules. Russian Acad. Sci. Dokl. Math. 53 (1996), 76–77.
[6] Brodskii G.: The Grothendieck condition AB5$^{\ast }$ and generalizations of module distributivity. Russ. Math. 41 (1997), 1–11. MR 1480764
[7] Camillo V. P.: Modules whose quotients have finite Goldie dimension. Pacific J. Math. 69 (1977), 337–338. MR 0442020 | Zbl 0356.13003
[8] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R.: Extending modules. Pitman, London, 1994. Zbl 0841.16001
[9] Dhompong S., Sanwong J., Plubtieng S., Tansee H.: On modules whose singular subgenerated modules are weakly injective. Algebra Colloq. 8 (2001), 227–236. MR 1838519
[10] Goel V. K., Jain S. K.: $\pi $-injective modules and rings whose cyclic modules are $\pi $-injective. Comm. Algebra 6 (1978), 59–73. MR 0491819
[11] Golan J. S., López-Permouth S. R.: QI-filters and tight modules. Comm. Algebra 19 (1991), 2217–2229. MR 1123120
[12] Jain S. K., López-Permouth S. R.: Rings whose cyclics are essentially embeddable in projective modules. J. Algebra 128 (1990), 257–269. MR 1031920
[13] Jain S. K. López-Permouth S. R., Risvi T.: A characterization of uniserial rings via continuous and discrete modules. J. Austral. Math. Soc., Ser. A 50 (1991), 197–203. MR 1094917
[14] Jain S. K., López-Permouth S. R., Saleh M.: On weakly projective modules. In: Ring Theory, Proceedings, OSU-Denison conference 1992, World Scientific Press, New Jersey, 1993, 200–208. MR 1344231
[15] Jain S. K., López-Permouth S. R., Oshiro K., Saleh M.: Weakly projective and weakly injective modules. Canad. J. Math. 34 (1994), 972–981. MR 1295126
[16] Jain S. K., López-Permouth S. R., Singh S.: On a class of QI-rings. Glasgow J. Math. 34 (1992), 75–81. MR 1145633
[17] Jain S. K., López-Permouth S. R.: A survey on the theory of weakly injective modules. In: Computational Algebra, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1994, 205–233. MR 1245954
[18] Kurshan A. P.: Rings whose cyclic modules have finitely generated socle. J. Algebra 14 (1970), 376–386. MR 0260780 | Zbl 0199.35503
[19] López-Permouth S. R.: Rings characterized by their weakly injective modules. Glasgow Math. J. 34 (1992), 349–353. MR 1181777
[20] Malik S., Vanaja N.: Weak relative injective M-subgenerated modules. Advances in Ring Theory, Birkhauser, 1997, 221–239. MR 1602677 | Zbl 0934.16002
[21] Mohamed S., Muller B., Singh S.: Quasi-dual continuous modules. J. Austral. Math. Soc., Ser. A 39 (1985), 287–299. MR 0802719
[22] Mohamed S., Muller B.: Continuous and discrete modules. Cambridge University Press 1990. MR 1084376
[23] Saleh M.: A note on tightness. Glasgow Math. J. $\mathbf{41}$ (1999), 43–44. MR 1689655 | Zbl 0923.16003
[24] Saleh M., Abdel-Mohsen A.: On weak injectivity and weak projectivity. In: Proceedings of the Mathematics Conference, World Scientific Press, New Jersey, 2000, 196–207. MR 1773029 | Zbl 0985.16002
[25] Saleh M., Abdel-Mohsen A.: A note on weak injectivity. Far East Journal of Mathematical Sciences (FJMS) 11 (2003), 199-20-6. MR 2020502 | Zbl 1063.16004
[26] Saleh M.: On q.f.d. modules and q.f.d. rings. Houston J. Math. 30 (2004), 629–636. MR 2083867 | Zbl 1070.16002
[27] Sanh N. V., Shum K. P., Dhompongsa S., Wongwai S.: On quasi-principally injective modules. Algebra Colloq. 6 (1999), 296–276. MR 1809646 | Zbl 0949.16003
[28] Sanh N. V., Dhompongsa S., Wongwai S.: On generalized q.f.d. modules and rings. Algebra and Combinatorics, Springer-Verlag, 1999, 367–272. MR 1733193
[29] Wisbauer R.: Foundations of module and ring theory. Gordon and Breach, 1991. MR 1144522 | Zbl 0746.16001
[30] Zhou Y.: Notes on weakly semisimple rings. Bull. Austral. Math. Soc. 52 (1996), 517–525. MR 1358705
[31] Zhou Y.: Weak injectivity and module classes. Comm. Algebra $\mathbf{25}$ (1997), 2395–2407. MR 1459568 | Zbl 0934.16004
Partner of
EuDML logo