[1] Alonso R. J.:
Decomposition of higher order tangent fields and calculus of variations. Proc. Diff. Geom. Appl. (Brno, 1998), 451–460, Masaryk Univ., Brno, 1999.
MR 1708934
[2] Alonso R. J.:
$D$-modules, contact valued calculus and Poincaré-Cartan form. Czechoslovak Math. J. 49 (124) (3) (1999), 585–606.
MR 1708350 |
Zbl 1011.58011
[3] Anderson J. L., Bergmann P. G.:
Constraints in covariant field theories. Phys. Rev. 83 (5) (1951), 1018–1025.
MR 0044382 |
Zbl 0045.45505
[4] Allemandi G., Fatibene L., Ferraris M., Francaviglia M., Raiteri M.:
Nöther conserved quantities and entropy in general relativity. In: Recent Developments in General Relativity, Genoa 2000; R. Cianci et al. eds., Springer Italia, Milano (2001), 75–92.
MR 1852664 |
Zbl 1202.83039
[6] Bergmann P. G.:
Conservation laws in general relativity as the generators of coordinate transformations. Phys. Rev. 112 (1) (1958), 287–289.
MR 0099236
[7] Chruściel P. T.:
On the relation between the Einstein and the Komar expressions for the energy of the gravitational field. Ann. Inst. H. Poincaré 42 (3) (1985), 267–282.
MR 0797276 |
Zbl 0645.53063
[8] Eck D. J.:
Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc. 247 (1981), 1–48.
MR 0632164 |
Zbl 0493.53052
[9] Fatibene L., Francaviglia M., Raiteri M.:
Gauge natural field theories and applications to conservation laws. Proc. VIII Conf. Differential Geom. Appl., O. Kowalski et al. eds.; Silesian University at Opava, Opava (Czech Republic) 2001, 401–413.
MR 1978794 |
Zbl 1026.70027
[10] Fatibene L., Francaviglia M., Palese M.:
Conservation laws and variational sequences in gauge-natural theories. Math. Proc. Cambridge Philos. Soc. 130 (2001), 555–569.
MR 1816809 |
Zbl 0988.58006
[11] Ferraris M., Francaviglia M.:
The Lagrangian approach to conserved quantities in general relativity. In: Mechanics, Analysis and Geometry: 200 Years after Lagrange; M. Francaviglia ed.; Elsevier Science Publishers B. V. (Amsterdam, 1991), 451–488.
MR 1098527 |
Zbl 0717.53060
[12] Ferraris M., Francaviglia M., Raiteri M.:
Conserved quantities from the equations of motion (with applications to natural and gauge natural theories of gravitation). Classical Quantum Gravity 20 (2003), 4043–4066.
MR 2017333
[13] Francaviglia M., Palese M.:
Second order variations in variational sequences. Steps in Differential Geometry (Debrecen, 2000) Inst. Math. Inform. Debrecen, Hungary (2001), 119–130.
MR 1859293 |
Zbl 0977.58019
[14] Francaviglia M., Palese M.:
Generalized Jacobi morphisms in variational sequences. In: Proc. XXI Winter School Geometry and Physics, Srní 2001, Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 195–208.
MR 1972435 |
Zbl 1028.58022
[15] Francaviglia M., Palese M., Vitolo R.:
Symmetries in finite order variational sequences. Czechoslovak Math. J. 52 (127) (2002), 197–213.
MR 1885465 |
Zbl 1006.58014
[16] Francaviglia M., Palese M., Vitolo R.:
Superpotentials in variational sequences. Proc. VII Conf. Differential Geom. Appl., Satellite Conf. of ICM in Berlin (Brno 1998); I. Kolář et al. eds.; Masaryk University in Brno (Czech Republic) 1999, 469–480.
MR 1708936
[17] Francaviglia M., Palese M., Vitolo R.:
The Hessian and Jacobi morphisms for higher order calculus of variations. Differential Geom. Appl. 22 (1) (2005), 105–120.
MR 2106379 |
Zbl 1065.58010
[18] Godina M., Matteucci P.:
Reductive $G$-structures and Lie derivatives. J. Geom. Phys. 47 (1) (2003), 66–86.
MR 1985484 |
Zbl 1035.53035
[19] Goldberg J. N.:
Conservation laws in general relativity. Phys. Rev. (2) 111 (1958), 315–320.
MR 0099235 |
Zbl 0089.20903
[20] Goldschmidt H., Sternberg S.:
The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier, Grenoble 23 (1) (1973), 203–267.
MR 0341531 |
Zbl 0243.49011
[21] Horák M., Kolář I.:
On the higher order Poincaré-Cartan forms. Czechoslovak Math. J. 33 (108) (1983), 467–475.
Zbl 0545.58004
[22] Janyška J.:
Natural and gauge-natural operators on the space of linear connections on a vector bundle. Proc. Differential Geom. Appl. (Brno, 1989); J Janyška, D. Krupka eds.; World Scientific (Singapore, 1990), 58–68.
MR 1062006
[23] Janyška J.:
Reduction theorems for general linear connections. Differential Geom. Appl. 20 (2004), no. 2, 177–196.
MR 2038554
[24] Janyška J., Modugno M.:
Infinitesimal natural and gauge-natural lifts. Differential Geom. Appl. 2 (2) (1992), 99–121.
MR 1245551 |
Zbl 0780.53023
[25] Julia B., Silva S.:
Currents and superpotentials in classical gauge theories, II, Global Aspects and the example of affine gravity. Classical Quantum Gravity 17 (22) (2000), 4733–4743.
MR 1797968 |
Zbl 0988.83026
[26] Katz J.:
A note on Komar’s anomalous factor. Classical Quantum Gravity 2 (3) (1985), 423–425.
MR 0792031
[27] Kolář I.:
On some operations with connections. Math. Nachr. 69 (1975), 297–306.
MR 0391157
[28] Kolář I.:
Prolongations of generalized connections. Coll. Math. Soc. János Bolyai, (Differential Geometry, Budapest, 1979) 31 (1979), 317–325.
MR 0706928
[29] Kolář I.:
A geometrical version of the higher order Hamilton formalism in fibred manifolds. J. Geom. Phys. 1 (2) (1984), 127–137.
MR 0794983
[30] Kolář I.:
Some geometric aspects of the higher order variational calculus. Geom. Meth. in Phys., Proc. Diff. Geom. and its Appl., (Nové Město na Moravě, 1983); D. Krupka ed.; J. E. Purkyně University (Brno, 1984), 155–166.
MR 0793206
[31] Kolář I.:
Natural operators related with the variational calculus. Proc. Differential Geom. Appl. (Opava, 1992), 461–472, Math. Publ. 1 Silesian Univ. Opava, Opava, 1993.
MR 1255562
[32] Kolář I., Michor P. W., Slovák J.:
Natural operations in differential geometry. Springer-Verlag, N.Y., 1993.
MR 1202431 |
Zbl 0782.53013
[33] Kolář I., Virsik G.:
Connections in first principal prolongations. In: Proc. XVI Winter School Geometry and Physics, Srní 1995, Rend. Circ. Mat. Palermo (2), Suppl. 43 (1995), 163–171.
MR 1463518
[34] Kolář I., Vitolo R.:
On the Helmholtz operator for Euler morphisms. Math. Proc. Cambridge Philos. Soc. 135 (2) (2003), 277–290.
MR 2006065 |
Zbl 1048.58012
[35] Komar A.:
Covariant conservation laws in general relativity. Phys. Rev. 113 (3) (1959), 934–936.
MR 0102403 |
Zbl 0086.22103
[36] Krupka D.:
Variational sequences on finite order jet spaces. Proc. Diff. Geom. and its Appl. (Brno, 1989), J. Janyška, D. Krupka eds.; World Scientific (Singapore, 1990), 236–254.
MR 1062026
[37] Krupka D.:
Topics in the calculus of variations: finite order variational sequences. O. Kowalski and D. Krupka eds., Proc. Differential Geom. and its Appl. (Opava, 1992), Math. Publ. 1, Silesian Univ. Opava, Opava, 1993, 473–495.
MR 1255563
[38] Mangiarotti L., Modugno M.:
Fibered spaces, jet spaces and connections for field theories. In: Proc. Int. Meet. Geom. Phys.; M. Modugno ed.; Pitagora Editrice (Bologna, 1983), 135–165.
MR 0760841 |
Zbl 0539.53026
[39] Nöther E.: Invariante variationsprobleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl. II (1918), 235–257.
[40] Palese M.: Geometric foundations of the calculus of variations. Variational sequences, symmetries and Jacobi morphisms. Ph.D. Thesis, University of Torino (2000).
[43] Trautman A.:
Conservation laws in general relativity. In Gravitation: An introduction to current research, pp. 169–198, Wiley, New York 1962.
MR 0143627
[44] Trautman A.:
Noether equations and conservation laws. Comm. Math. Phys. 6 (1967), 248–261.
MR 0220470 |
Zbl 0172.27803
[45] Trautman A.:
A metaphysical remark on variational principles. Acta Phys. Polon. B XX (1996), 1–9.
MR 1388335 |
Zbl 0966.58503
[46] Vitolo R.:
Finite order Lagrangian bicomplexes. Math. Proc. Camb. Phil. Soc. 125 (1) (1999), 321–333.
MR 1643802