[2] Al-Huzali A., Jain S. K., López-Permouth S. R.:
Rings whose cyclics have finite Goldie dimension. J. Algebra 153 (1992), 37–40.
MR 1195405
[3] Berry D.:
Modules whose cyclic submodules have finite dimension. Canad. Math. Bull. 19 (1976), 1–6.
MR 0417244 |
Zbl 0335.16025
[4] Brodskii G., Saleh M., Thuyet L., Wisbauer R.:
On weak injectivity of direct sums of modules. Vietnam J. Math. 26 (1998), 121–127.
MR 1684323
[5] Camillo V. P.:
Modules whose quotients have finite Goldie dimension. Pacific J. Math. 69 (1977), 337–338.
MR 0442020 |
Zbl 0356.13003
[6] Dhompong S., Sanwong J., Plubtieng S., Tansee H.:
On modules whose singular subgenerated modules are weakly injective. Algebra Colloq. 8 (2001), 227–236.
MR 1838519
[7] Dung N. V., Huynh D. V., Smith P., Wisbauer R.:
Extending modules. Pitman, 1994.
Zbl 0841.16001
[8] Golan J. S., López-Permouth S. R.:
QI-filters and tight modules. Comm. Algebra 19 (1991), 2217–2229.
MR 1123120
[9] Jain S. K., López-Permouth S. R.:
Rings whose cyclics are essentially embeddable in projective modules. J. Algebra 128 (1990), 257–269.
MR 1031920
[10] Jain S. K., López-Permouth S. R., Oshiro K., Saleh M.:
Weakly projective and weakly injective modules. Canad. J. Math. 34 (1994), 972–981.
MR 1295126
[11] Jain S. K., López-Permouth S. R., Singh S.:
On a class of QI-rings. Glasgow J. Math. 34 (1992), 75–81.
MR 1145633
[12] Jain S. K., López-Permouth S. R.:
A survey on the theory of weakly injective modules. In: Computational Algebra, 205–233, Lecture notes in pure and applied mathematics, Marcel Dekker, Inc., New York, 1994.
MR 1245954
[13] Kurshan A. P.:
Rings whose cyclic modules have finitely generated socle. J. Algebra 14 (1970), 376–386.
MR 0260780 |
Zbl 0199.35503
[14] López-Permouth S. R.:
Rings characterized by their weakly injective modules. Glasgow Math. J. 34 (1992), 349–353.
MR 1181777
[15] Malik S., Vanaja N.:
Weak relative injective M-subgenerated modules. Advances in Ring Theory, Birkhauser, 1997, 221–239.
MR 1602677 |
Zbl 0934.16002
[16] Page S., Zhou Y.:
When direct sums of singular injectives are injective. In: Ring theory, Proceedings of the Ohio State-Denison Conference, World Scientific Publishing Co., 1993.
MR 1344237 |
Zbl 0853.16005
[17] Page S., Zhou Y.:
On direct sums of injective modules and chain conditions. Canad. J. Math. 46 (1994), 634–647.
MR 1276116 |
Zbl 0807.16006
[18] Page S., Zhou Y.:
Direct sums of quasi-injective modules, injective hulls, and natural classes. Comm. Alg. 22 (1994), 2911–2923.
MR 1272360
[20] Saleh M., Abdel-Mohsen A.:
On weak injectivity and weak projectivity. In: Proceedings of the Mathematics Conference, World Scientific Press, New Jersey, 2000, 196–207.
MR 1773029 |
Zbl 0985.16002
[23] Saleh M.:
On weakly projective and weakly injective modules. Comment. Math. Univ. Corolin. 45 (2004), 389–402.
MR 2103135 |
Zbl 1101.16004
[24] Sanh N. V., Shum K. P., Dhompongsa S., Wongwai S.:
On quasi-principally injective modules. Algebra Colloq. 6 (1999), 296–276.
MR 1809646 |
Zbl 0949.16003
[25] Sanh N. V., Dhompongsa S., Wongwai S.:
On generalized q.f.d. modules and rings. Algebra and Combinatorics (1999), 367–372.
MR 1733193
[27] Zhou Y.:
Notes on weakly semisimple rings. Bull. Austral. Math. Soc. 52 (1996), 517–525.
MR 1358705