Previous |  Up |  Next

Article

Keywords:
Lie ideals; prime rings; derivations; Jordan left derivations; left derivations; torsion free rings
Summary:
Let $R$ be a $2$-torsion free prime ring. Suppose that $\theta , \phi $ are automorphisms of $R$. In the present paper it is established that if $R$ admits a nonzero Jordan left $(\theta ,\theta )$-derivation, then $R$ is commutative. Further, as an application of this resul it is shown that every Jordan left $(\theta ,\theta )$-derivation on $R$ is a left $(\theta ,\theta )$-derivation on $R$. Finally, in case of an arbitrary prime ring it is proved that if $R$ admits a left $(\theta ,\phi )$-derivation which acts also as a homomorphism (resp. anti-homomorphism) on a nonzero ideal of $R$, then $d=0$ on $R$.
References:
[1] Ashraf M., Rehman N.: On Lie ideals and Jordan left derivation of prime rings. Arch. Math.(Brno) 36 (2000), 201–206. MR 1785037
[2] Ashraf M., Rehman N., Quadri M. A.: On $(\sigma ,\tau )$- derivations in certain class of rings. Rad. Mat. 9 (1999), 187–192. MR 1790206
[3] Ashraf M., Rehman N., Quadri M. A.: On Lie ideals and $(\sigma ,\tau )$-Jordan derivations on prime rings. Tamkang J. Math. 32 (2001), 247–252. MR 1865617 | Zbl 1006.16044
[4] Ashraf M., Rehman N., Shakir Ali: On Jordan left derivations of Lie ideals in prime rings. Southeast Asian Bull. Math. 25 (2001), 375–382.
[5] Awtar R.: Lie and Jordan structures in prime rings with derivations. Proc. Amer. Math. Soc. 41 (1973), 67–74. MR 0318233
[6] Awtar R.: Lie ideals and Jordan derivations of prime rings. Proc. Amer. Math. Soc. 90 (1984), 9–14. MR 0722405 | Zbl 0528.16020
[7] Bell H. E., Daif M. N.: On derivations and commutativity in prime rings. Acta Math. Hungar. 66 (1995), 337–343. MR 1314011 | Zbl 0822.16033
[8] Bell H. E., Kappe L. C.: Rings in which derivations satisfy certain algebraic conditions. Acta Math. Hungar. 53 (1989), 339–346. MR 1014917 | Zbl 0705.16021
[9] Bergen J., Herstein I. N., Kerr J. W.: Lie ideals and derivations of prime rings . J. Algebra 71 (1981), 259–267. MR 0627439 | Zbl 0463.16023
[10] Bresar M.: Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 104 (1988), 1003–1006. MR 0929422 | Zbl 0691.16039
[11] Bresar M., Vukman J.: Jordan $(\theta ,\phi )$-derivations. Glas. Mat., III. Ser. 26 (1991), 13–17. MR 1269170
[12] Bresar M., Vukman J.: On left derivations and related mappings. Proc. Amer. Math. Soc. 110 (1990), 7–16. MR 1028284 | Zbl 0703.16020
[13] Cairini L., Giambruno A.: Lie ideals and nil derivations. Boll. Un. Mat. Ital. 6 (1985), 497–503. MR 0821089
[14] Deng Q.: Jordan $(\theta ,\phi )$-derivations. Glasnik Mat. 26 (1991), 13–17. MR 1269170
[15] Herstein I. N.: Jordan derivations of prime rings. Proc. Amer. Math. Soc. 8 (1957), 1104–1110. MR 0095864
[16] Herstein I. N.: Topics in ring theory. Univ. of Chicago Press, Chicago 1969. MR 0271135 | Zbl 0232.16001
[17] Kill-Wong Jun, Byung-Do Kim: A note on Jordan left derivations. Bull. Korean Math. Soc. 33 (1996), 221–228. MR 1405475
[18] Posner E. C.: Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100. MR 0095863
[19] Vukman J.,: Commuting and centralizing mappings in prime rings. Proc. Amer. Math. Soc. 109 (1990), 47–52. MR 1007517 | Zbl 0697.16035
[20] Vukman J.: Jordan left derivations on semiprime rings. Math. J. Okayama Univ. 39 (1997), 1–6. MR 1680747 | Zbl 0937.16044
Partner of
EuDML logo