Article
Keywords:
conformally flat manifolds; semi-symmetric spaces
Summary:
We obtain the complete classification of conformally flat semi-symmetric spaces.
References:
[BC] Boeckx E., Calvaruso G.:
When is the unit tangent sphere bundle semi-symmetric?. preprint 2002.
MR 2075771 |
Zbl 1076.53032
[BKV] Boeckx E., Kowalski O., and Vanhecke L.:
Riemannian manifolds of conullity two. World Scientific 1996.
MR 1462887
[CV] Calvaruso G., Vanhecke L.:
Semi-symmetric ball-homogeneous spaces and a volume conjecture. Bull. Austral. Math. Soc. 57 (1998), 109–115.
MR 1623824 |
Zbl 0903.53031
[HSk] Hashimoto N., Sekizawa M.:
Three-dimensional conformally flat pseudo-symmetric spaces of constant type. Arch. Math. (Brno) 36 (2000), 279–286.
MR 1811172 |
Zbl 1054.53060
[K] Kurita M.:
On the holonomy group of the conformally flat Riemannian manifold. Nagoya Math. J. 9 (1975), 161–171.
MR 0074050
[R] Ryan P.:
A note on conformally flat spaces with constant scalar curvature. Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971, 2 (1972), 115–124.
MR 0487882
[S] Szabó Y. I.:
Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$. I, the local version, J. Differential Geom. 17 (1982), 531–582.
MR 0683165
[T] Takagi H.:
An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$. Tôhoku Math. J. 24 (1972), 105–108.
MR 0319109