[1] Brezzi F., Gasser I., Markowich P., Schmeiser C.:
Thermal equilibrium state of the quantum hydrodynamic model for semiconductor in one dimension. Appl. Math. Lett. 8 (1995), 47–52.
MR 1355150
[2] Chen G., Wang D.:
Convergence of shock schemes for the compressible Euler-Poisson equations. Comm. Math. Phys. 179 (1996), 333–364.
MR 1400743
[3] Courant R., Friedrichs K. O.:
Supersonic flow and shock waves. Springer-Verlag, New York 1976.
MR 0421279
[4] Degond P., Markowich P. A.:
On a one-dimensional steady-state hydrodynamic model. Appl. Math. Lett. 3 (1990), 25–29.
MR 1077867
[5] Degond P., Markowich P. A.:
A steady state potential flow model for semiconductors. Ann. Mat. Pura Appl. 165 (1993), 87–98.
MR 1271412
[6] Gamba I.:
Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor. Comm. Partial Differential Equations 17 (1992), 553–577.
MR 1163436
[7] Gamba I., Jüngel A.:
Asymptotic limits in quantum trajectory models. Comm. Partial Differential Equations 27 (2002), 669–691.
MR 1900558
[8] Gamba I., Jüngel A.:
Positive solutions to singular second and third order differential equations for quantum fluids. Arch. Rational Mech. Anal. 156 (2001), 183–203.
MR 1816474
[9] Gamba I., Morawitz C.:
A viscous approximation for a 2D steady semiconductor or transonic gas dynamics flow: existence theorem for potential flow. Comm. Pure Appl. Math. 49 (1996), 999–1049.
MR 1404324
[10] Gardner C.: Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device. IEEE Trans. El. Dev. 38 (1991), 392–398.
[11] Gardner C.:
The quantum hydrodynamic model for semiconductors devices. SIAM J. Appl. Math. 54 (1994), 409–427.
MR 1265234
[12] Gasser I., Jüngel A.:
The quantum hydrodynamic model for semiconductors in thermal equilibrium. Z. Angew. Math. Phys. 48 (1997), 45–59.
MR 1439735
[13] Gasser I., Lin C.-K., Markowich P.:
A review of dispersive limits of the (non)linear Schrödinger-type equation. Taiwanese J. of Math. 4, (2000), 501–529.
MR 1799752
[14] Gasser I., Markowich P.:
Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptot. Anal. 14 (1997), 97–116.
MR 1451208 |
Zbl 0877.76087
[15] Gasser I., Markowich P. A., Ringhofer C.:
Closure conditions for classical and quantum moment hierarchies in the small temperature limit. Transport Theory Statistic Phys. 25 (1996), 409–423.
MR 1407543 |
Zbl 0871.76078
[16] Gyi M. T., Jüngel A.:
A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv. Differential Equations 5 (2000), 773–800.
MR 1750118 |
Zbl 1174.82348
[17] Hsiao L., Yang T.:
Asymptotic of initial boundary value problems for hydrodynamic and drift diffusion models for semiconductors. J. Differential Equations 170 (2001), 472–493.
MR 1815191
[18] Jerome J.:
Analysis of charge transport: a mathematical study of semiconductor devices. Springer-Verlag, Heidelberg 1996.
MR 1437143
[19] Jüngel A.:
A steady-state potential flow Euler-Poisson system for charged quantum fluids. Comm. Math. Phys. 194 (1998), 463–479.
MR 1627673
[20] Jüngel A.:
Quasi-hydrodynamic semiconductor equations. Progress in Nonlinear Differential Equations, Birkhäuser, Basel 2001.
MR 1818867 |
Zbl 0969.35001
[21] Jüngel A., Mariani M. C., Rial D.:
Local existence of solutions to the transient quantum hydrodynamic equations. Math. Models Methods Appl. Sci. 12 (2002), 485–495.
MR 1899838 |
Zbl 1215.81031
[22] Jüngel A., Li H.-L.:
Quantum Euler-Poisson systems: global existence and exponential decay. to appear in Quart. Appl. Math. 2005.
MR 2086047 |
Zbl 1069.35012
[23] Landau L. D., Lifshitz E. M.:
Quantum mechanics: non-relativistic theory. New York, Pergamon Press 1977.
MR 0400931
[24] Li H.-L., Markowich P. A.:
A review of hydrodynamical models for semiconductors: asymptotic behavior. Bol. Soc. Brasil. Mat. (N.S.) 32 (2001), 321-342.
MR 1894562 |
Zbl 0996.82064
[25] Loffredo M., Morato L.: On the creation of quantum vortex lines in rotating HeII. Il nouvo cimento 108B (1993), 205–215.
[26] Madelung E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40 (1927), 322.
[27] Marcati P., Natalini R.:
Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Arch. Rational Mech. Anal. 129 (1995), 129–145.
MR 1328473 |
Zbl 0829.35128
[28] Markowich P., Ringhofer C., Schmeiser C.:
Semiconductor Equations. Springer, Wien 1990.
MR 1063852 |
Zbl 0765.35001
[29] Pacard F., Unterreiter A.:
A variational analysis of the thermal equilibrium state of charged quantum fluids. Comm. Partial Differential Equations 20 (1995), 885–900.
MR 1326910 |
Zbl 0820.35112
[30] Shu C.-W.:
Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report No. 97-65, NASA Langley Research Center, Hampton, USA 1997.
MR 1728856
[31] Zhang B., Jerome W.:
On a steady-state quantum hydrodynamic model for semiconductors. Nonlinear Anal., Theory Methods Appl. 26 (1996), 845–856.
MR 1362757 |
Zbl 0882.76105