Previous |  Up |  Next

Article

Keywords:
multiplication module; secondary module; Ohm’s properties
Summary:
Let $R$ be a commutative ring with non-zero identity. Various properties of multiplication modules are considered. We generalize Ohm’s properties for submodules of a finitely generated faithful multiplication $R$-module (see [8], [12] and [3]).
References:
[1] Ali M. M.: The Ohm type properties for multiplication ideals. Beiträge Algebra Geom. 37 (2) (1996), 399–414. MR 1422534 | Zbl 1054.13500
[2] Anderson D. D., Al-Shaniafi Y.: Multiplication modules and the ideal $\theta (M)$. Comm. Algebra 30 (7) (2002), 3383–3390. MR 1915002 | Zbl 1016.13002
[3] Anderson D. D.: Some remarks on multiplication ideals, II. Comm. Algebra 28 (2000), 2577–2583. MR 1757483 | Zbl 0965.13003
[4] Ameri R.: On the prime submodules of multiplication modules. Int. J. Math. Math. Sci. 27 (2003), 1715–1724. MR 1981026 | Zbl 1042.16001
[5] Barnard, A: Multiplication modules. J. Algebra 71 (1981), 174–178. MR 0627431 | Zbl 0468.13011
[6] El-Bast Z. A., Smith P. F.: Multiplication modules. Comm. Algebra 16 (1988), 755–779. MR 0932633 | Zbl 0642.13003
[7] Ebrahimi Atani S.: Submodules of secondary modules. Int. J. Math. Math. Sci. 31 (6) (2002), 321–327. MR 1927825
[8] Gilmer R., Grams A.: The equality $(A \cap B)^{n} = A^{n} \cap B^{n}$ for ideals. Canad. J. Math. 24 (1972), 792–798. MR 0308109
[9] Low G. H., Smith P. F.: Multiplication modules and ideals. Comm. Algebra 18 (1990), 4353–4375. MR 1084452 | Zbl 0737.13001
[10] Lu, C-P.: Spectra of modules. Comm. Algebra 23 (10) (1995), 3741–3752. MR 1348262
[11] Macdonald I. G.: Secondary representation of modules over commutative rings. Symposia Matematica 11 (Istituto Nazionale di alta Matematica, Roma, (1973), 23–43. MR 0342506
[12] Naoum A. G.: The Ohm type properties for finitely generated multiplication ideals. Period. Math. Hungar. 18 (1987), 287–293. MR 0902516 | Zbl 0628.13002
[13] Smith P. F.: Some remarks on multiplication module. Arch. Math. 50 (1988), 223–235. MR 0933916
[14] Schenzel S.: Asymptotic attached prime ideals to injective modules. Comm. Algebra 20 (2) (1992), 583–590. MR 1146316
Partner of
EuDML logo