Previous |  Up |  Next

Article

Keywords:
multiple solutions; singular; existence; discrete boundary value problem
Summary:
In this paper we establish the existence of single and multiple solutions to the positone discrete Dirichlet boundary value problem \[ \left\lbrace \begin{array}{l} \Delta \big [\phi (\Delta u(t-1))\big ]+ q(t) f(t,u(t))=0\,,\quad t\in \lbrace 1,2,\dots ,T\rbrace \\[3pt] u(0)=u(T+1)=0\,, \end{array} \right. \] where $\phi (s) = |s|^{p-2}s$, $p>1$ and our nonlinear term $f(t,u)$ may be singular at $u=0$.
References:
[1] Agarwal R. P., O’Regan D.: Singular discrete boundary value problems. Appl. Math. Lett. 12 (1999), 127–131. MR 1750610 | Zbl 0944.39003
[2] Agarwal R. P., O’Regan D.: Boundary value problems for discrete equations. Appl. Math. Lett. 10 (1997), 83–89. MR 1458158 | Zbl 0890.39001
[3] Agarwal R. P., O’Regan D.: Singular discrete $(n,p)$ boundary value problems. Appl. Math. Lett. 12 (1999), 113–119. MR 1751342 | Zbl 0970.39006
[4] Agarwal R. P., O’Regan D.: Nonpositive discrete boundary value problems. Nonlinear Anal. 39 (2000), 207–215. MR 1722094
[5] Agarwal R. P., O’Regan D.: Existence theorem for single and multiple solutions to singular positone boundary value problems. J. Differential Equations, 175 (2001), 393–414. MR 1855974
[6] Agarwal R. P., O’Regan D.: Twin solutions to singular Dirichlet problems. J. Math. Anal. Appl. 240 (1999), 433–445. MR 1731655
[7] Agarwal R. P., O’Regan D.: Twin solutions to singular boundary value problems. Proc. Amer. Math. Soc. 128 (7) ( 2000), 2085–2094. MR 1664297 | Zbl 0946.34020
[8] Agarwal R. P., O’Regan D.: Multiplicity results for singular conjugate, focal, and $(N,P)$ problems. J. Differential Equations 170 (2001), 142–156. MR 1813103 | Zbl 0978.34018
[9] Deimling K.: Nonlinear functional analysis. Springer Verlag, 1985. MR 0787404 | Zbl 0559.47040
[10] Henderson J.: Singular boundary value problems for difference equations. Dynam. Systems Appl. (1992), 271–282. MR 1182649 | Zbl 0761.39002
[11] Henderson J.: Singular boundary value problems for higher order difference equations. In Proceedings of the First World Congress on Nonlinear Analysis, (Edited by V. Lakshmikantham), Walter de Gruyter, 1994, 1139–1150. MR 1389147
[12] Jiang D. Q.: Multiple positive solutions to singular boundary value problems for superlinear higher-order ODEs. Comput. Math. Appl. 40 (2000), 249–259. MR 1763623 | Zbl 0976.34019
[13] Jiang D. Q., Pang P. Y. H., Agarwal R. P.: Upper and lower solutions method and a superlinear singular discrete boundary value problem. Dynam. Systems Appl., to appear. MR 2370156
[14] O’Regan D.: Existence Theory for Nonlinear Ordinary Differential Equations. Kluwer Academic, Dordrecht, 1997. MR 1449397 | Zbl 1077.34505
Partner of
EuDML logo