Article
Keywords:
projection; positive operator; factorization
Summary:
An operator with infinite dimensional kernel is positive iff it is a positive scalar times a certain product of three projections.
References:
[1] Fong C. K., Wu P. Y.:
Diagonal operators: dilation, sum and product. Acta Sci. Math. (Szeged) 57 (1993), No. 1-4, 125–138.
MR 1243273 |
Zbl 0819.47047
[3] Halmos P. R., Kakutani S.:
Products of symmetries. Bull. Amer. Math. Soc. 64 (1958), 77–78.
MR 0100225 |
Zbl 0084.10602
[4] Hawkins J. B., Kammerer W. J.:
A class of linear transformations which can be written as the product of projections. Proc. Amer. Math. Soc. 19 (1968), 739–745.
MR 0225195
[5] Phillips N. C.:
Every invertible Hilbert space operator is a product of seven positive operators. Canad. Math. Bull. 38 (1995), no. 2, 230–236.
MR 1335103 |
Zbl 0826.46049
[6] Radjavi H.:
On self-adjoint factorization of operators. Canad. J. Math. 21 (1969), 1421–1426.
MR 0251575 |
Zbl 0188.44301
[7] Radjavi H.:
Products of hermitian matrices and symmetries. Proc. Amer. Math. Soc. 21 (1969), 369–372; 26 (1970), 701.
MR 0240116 |
Zbl 0175.30703
[8] Wu P. Y.:
Product of normal operators. Canad. J. Math. XL, No 6 (1988), 1322–1330.
MR 0990101