Previous |  Up |  Next

Article

Keywords:
upper solution; lower solution; order interval; truncation function; penalty function; pseudomonotone operator; coercive operator; Leray-Schauder principle; maximal solution; minimal solution
Summary:
In this note we prove the existence of extremal solutions of the quasilinear Neumann problem $-( \vert x^{^{\prime }}(t) \vert ^{p-2}x^{^{\prime }}(t))^{^{\prime }} = f(t,x(t),x ^{^{\prime }}(t))$, a.e. on $T$, $x^{^{\prime }}(0) = x^{^{\prime }}(b) =0$, $2\le p < \infty $ in the order interval $[\psi ,\varphi ]$, where $\psi $ and $\varphi $ are respectively a lower and an upper solution of the Neumann problem.
References:
[1] Boccardo L., Drábek P., Giachetti D., Kučera M.: Generalization of Fredholm alternative for nonlinear differential operators. Nonlinear Anal. 10 (1986), 1083–1103. MR 0857742
[2] Brézis H.: Analyse functionelle: Théorie et applications. Masson, Paris 1983. MR 0697382
[3] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray-Schauder degree result and existence for $(\vert u^{^{\prime }}(t) \vert ^{p-2}u^{^{\prime }}(t))^{^{\prime }} + f(t,u(t)) = 0, u(0)=u(T)=0, p>1)$. J. Differential Equations 80 (1989), 1–13. MR 1003248
[4] Drábek P.: Solvability of boundary value problems with homogeneous ordinary differential operator. Rend. Istit. Mat. Univ. Trieste 18 (1986), 105–125. MR 0928322
[5] Dunford N., Schwartz J. T.: Linear operators. Part I: General theory. Interscience Publishers, New York 1958–1971. MR 1009162
[6] Gao W., Wang J.: A nonlinear second order periodic boundary value problem with Carathéodory functions. Ann. Polon. Math. LXVII. 3 (1995), 283–291. MR 1356797
[7] Gilbarg D., Trudinger N.: Elliptic partial differential equations of second order. Springer-Verlag, Berlin 1983. MR 0737190 | Zbl 0562.35001
[8] Dugundji J., Granas A.: Fixed point theory, Vol. I. Monogr. Mat. PWN, Warsaw 1992.
[9] Guo Z.: Boundary value problems of a class of quasilinear ordinary differential equations. Differential Integral Equations 6, No. 3 (1993), 705–719. MR 1202567 | Zbl 0784.34018
[10] Halidias N., Papageorgiou N. S.: Existence of solutions for nonlinear parabolic problems. Arch. Math. (Brno) 35 (1999), 255–274. MR 1725842 | Zbl 1046.35054
[11] Hu S., Papageorgiou N. S.: Handbook of multivalued analysis. Volume I: Theory. Kluwer, Dordrecht, The Netherlands 1997. MR 1485775 | Zbl 0887.47001
[12] Marcus M., Mizel V. J.: Absolute continuity on tracks and mapping of Sobolev spaces. Arch. Rational Mech. Anal. 45 (1972), 294–320. MR 0338765
[13] O’Regan D.: Some General existence principles and results for $(\phi (y^{^{\prime }}))= qf(t,y,y^{^{\prime }}), 0. SIAM J. Math. Anal. 24 No. 30 (1993), 648–668. MR 1215430
[14] Pascali D., Sburlan S.: Nonlinear mapping of monotone type. Editura Academiei, Bucuresti, Romania 1978. MR 0531036
[15] Peressini A. L.: Ordered topological vector spaces. Harper & Row, New York, Evanstone, London 1967. MR 0227731 | Zbl 0169.14801
[16] Wang J., Jiang D.: A unified approach to some two-point, three-point and four-point boundary value problems with Carathéodory functions. J. Math. Anal. Appl. 211 (1997), 223–232. MR 1460168 | Zbl 0880.34019
[17] Zeidler E.: Nonlinear functional analysis and its applications II. Springer-Verlag, New York 1990. MR 0816732 | Zbl 0684.47029
Partner of
EuDML logo