[1] Borůvka O.: O jistém problému minimálním (About a Certain Minimal Problem). Práce mor. přírodověd. spol. v Brně, III, (1926), 37–58. Czech with German summary.
[2] Frederickson G. N.:
Data structures for on-line updating of minimum spanning trees. SIAM J. Comput. 14 (1985), 781–798.
MR 0807881 |
Zbl 0575.68068
[3] Fredman M., Willard D. E.: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. In Proceedings of FOCS’90 (1990), 719–725.
[4] Graham R. L., Hell P.:
On the history of the minimum spanning tree problem. Ann. Hist. Comput. 7 (1985), 43–57.
MR 0783327 |
Zbl 0998.68003
[5] Chazelle B.:
A Minimum Spanning Tree Algorithm with Inverse-Ackermann Type Complexity. J. ACM 47 (2000), 1028–1047.
MR 1866456 |
Zbl 1094.68606
[6] Karger D. R., Klein P. N., Tarjan R. E.:
Linear expected-time algorithms for connectivity problems. J. ACM 42 (1995), 321–328.
MR 1409738
[7] Matsui T.:
The Minimum Spanning tree Problem on a Planar Graph. Discrete Appl. Math. 58 (1995), 91–94.
MR 1323024 |
Zbl 0823.05024
[8] Nešetřil J.:
Some remarks on the history of MST-problem. Arch. Math. (Brno) 33 (1997), 15–22.
MR 1464297
[9] Nešetřil J., de Mendez P. O.:
Colorings and Homomorphism of Minor Closed Classes. To appear in Pollack-Goodman Festschrift, Springer Verlag, 2002.
MR 2038495 |
Zbl 1071.05526
[10] Nešetřil J., Milková E., Nešetřilová H.:
Otakar Borůvka on Minimum Spanning Tree Problem. Discrete Math. 233(1–3) (2001), 3–36.
Zbl 0999.01019
[11] Pettie S.: Finding minimum spanning trees in $O(m\alpha (m,n))$ time. Tech Report TR99-23, Univ. of Texas at Austin, 1999.
[12] Pettie S., Ramachandran V.:
An Optimal Minimum Spanning Tree Algorithm. In Proceedings of ICALP’2000, 49–60, Springer Verlag, 2000.
MR 1795885 |
Zbl 0973.68534
[13] Tarjan R. E.:
Data structures and network algorithms. 44 CMBS-NSF Regional Conf. Series in Appl. Math. SIAM, 1983.
MR 0826534 |
Zbl 0584.68077