Previous |  Up |  Next

Article

Keywords:
pseudogroup; moving frame; equivalence of differential equations; differential equations with delay
Summary:
Continuing the idea of Part I, we deal with more involved pseudogroup of transformations $\bar{x}=\varphi (x)$, $\bar{y}=L(x)y$, $\bar{z}=M(x)z,\, \ldots $ applied to the first order differential equations including the underdetermined case (i.e. the Monge equation $y^{\prime }=f(x,y,z,z^{\prime })$) and certain differential equations with deviation (if $z=y(\xi (x))$ is substituted). Our aim is to determine complete families of invariants resolving the equivalence problem and to clarify the largest possible symmetries. Together with Part I, this article may be regarded as an introduction into the method of moving frames adapted to the theory of differential and functional-differential equations.
References:
[1] Aczél J.: Lectures on Functional Equations and Their Applications. Academic Press, New York 1966. MR 0208210
[2] Awane A., Goze M.: Pfaffian Systems, k–symplectic Systems. Kluwer Academic Publishers (Dordrecht–Boston–London), 2000. MR 1779116 | Zbl 0957.58004
[3] Bryant R., Chern S. S., Goldschmidt H., Griffiths P. A.: Exterior differential systems. Math. Sci. Res. Inst. Publ. 18, Springer - Verlag 1991. MR 1083148 | Zbl 0726.58002
[4] Cartan E.: Les systémes différentiels extérieurs et leurs applications géometriques. Hermann & Cie., Paris (1945). MR 0016174 | Zbl 0063.00734
[5] Cartan E.: Sur la structure des groupes infinis de transformations. Ann. Ec. Norm. 3-e serie, t. XXI, 1904 (also Oeuvres Complètes, Partie II, Vol 2, Gauthier–Villars, Paris 1953).
[6] Čermák J.: Continuous transformations of differential equations with delays. Georgian Math. J. 2 (1995), 1–8. MR 1310496 | Zbl 0817.34036
[7] Chrastina J.: Transformations of differential equations. Equadiff 9 CD ROM, Papers, Masaryk University, Brno 1997, 83–92.
[8] Chrastina J.: The formal theory of differential equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun., Mathematica 6, 1998. MR 1656843 | Zbl 0906.35002
[9] Gardner R. B.: The method of equivalence and its applications. CBMS–NSF Regional Conf. Ser. in Appl. Math. 58, 1989. MR 1062197 | Zbl 0694.53027
[10] Neuman F.: On transformations of differential equations and systems with deviating argument. Czechoslovak Math. J. 31 (106) (1981), 87–90. MR 0604115 | Zbl 0463.34051
[11] Neuman F.: Simultaneous solutions of a system of Abel equations and differential equations with several delays. Czechoslovak Math. J. 32 (107) (1982), 488–494. MR 0669790
[12] Neuman F.: Transformations and canonical forms of functional–differential equations. Proc. Roy. Soc. Edinburgh 115 A (1990), 349–357. MR 1069527
[13] Neuman F.: Global Properties of Linear Ordinary Differential Equations. Math. Appl. (East European Series) 52, Kluwer Acad. Publ., Dordrecht-Boston-London, 1991. MR 1192133 | Zbl 0784.34009
[14] Neuman F.: On equivalence of linear functional–differential equations. Results Math. 26 (1994), 354–359. MR 1300618 | Zbl 0829.34054
[15] Tryhuk V.: The most general transformations of homogeneous linear differential retarded equations of the first order. Arch. Math. (Brno) 16 (1980), 225–230. MR 0594470
[16] Tryhuk V.: The most general transformation of homogeneous linear differential retarded equations of the $n$-th order. Math. Slovaca 33 (1983), 15–21. MR 0689272
[17] Tryhuk V.: On global transformations of functional-differential equations of the first order. Czechoslovak Math. J. 50 (125) (2000), 279–293. MR 1761387 | Zbl 1054.34105
[18] Tryhuk V., Dlouhý O.: The moving frames for differential equations. I. The change of independent variable. Arch. Math. (Brno) 39 (2003), 317–333. MR 2032105 | Zbl 1116.34301
Partner of
EuDML logo