Previous |  Up |  Next

Article

Keywords:
Frölicher-Nijenhuis; Lenard scheme; bidifferential calculi
Summary:
In this note we discuss the geometrical relationship between bi-Hamiltonian systems and bi-differential calculi, introduced by Dimakis and Möller–Hoissen.
References:
[1] Crampin M., Sarlet W., Thompson G.: Bi-Differential Calculi and bi-Hamiltonian systems. J. Phys. A 33 (2000), 177–180. MR 1767035 | Zbl 0989.37063
[2] Dimakis A., Müller–Hoissen F.: Bi-differential calculi and integrable models. J. Phys. A 33 (2000), 957-974. MR 1748429 | Zbl 1043.37508
[3] Dimakis A., Müller-Hoissen F.: Bicomplex formulation and Moyal deformation of 2+1-dimensional Fordy-Kulish systems. nlin.SI/0008016, and the references therein. Zbl 1103.37309
[4] Magri F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, No. 5 (1978), 1156–1162. MR 0488516
[5] Magri F.: Eight lectures on integrable systems. Integrability of nonlinear systems, Proceedings Pondicherry, 1996, Edited by Y. Kosmann-Schwarzbach et. al., Lecture Notes in Phys. 495, Springer, Berlin, 1997, 256–296,. MR 1636296
[6] Michor P.: A generalization of Hamiltonian mechanics. J. Geom. Phys. 2, No. 2 (1985), 67–82. MR 0845468 | Zbl 0587.58004
Partner of
EuDML logo