[1] Aczél J.:
Über Zusammenhänge zwischen Differential– und Funktionalgleichungen. Jahresber. Deutsch. Math. Ver. 71 (1969), 55–57.
MR 0256014 |
Zbl 0175.45603
[2] Awane A., Goze M.:
Pfaffian Systems, k-symplectic Systems. Kluwer Academic Publischers (Dordrecht–Boston–London), 2000.
MR 1779116 |
Zbl 0957.58004
[3] Borůvka O.:
Linear Differential Transformations of the Second Order. The English Univ. Press, London, 1971.
MR 0463539
[4] Bryant R., Chern S. S., Goldschmidt H., Griffiths P. A.:
Exterior differential systems. Mat. Sci. Res. Inst. Publ. 18, Springer-Verlag 1991.
MR 1083148 |
Zbl 0726.58002
[5] Cartan E.:
Les systémes différentiels extérieurs et leurs applications géometriques. Act. Scient. et Ind. 994 (1945).
MR 0016174 |
Zbl 0063.00734
[6] Cartan E.: Sur la structure des groupes infinis de transformations. Ann. Ec. Norm. 3-e serie, t. XXI, 1904 (also Oeuvres Complètes, Partie II, Vol 2, Gauthier–Villars, Paris 1953).
[7] Chrastina J.: Transformations of differential equations. Equadiff 9 CD ROM, Papers, Masaryk univerzity, Brno 1997, 83–92.
[8] Chrastina J.:
The formal theory of differential equations. Folia Fac. Scient. Nat. Univ. Masarykianae Brunensis, Mathematica 6, 1998.
MR 1656843 |
Zbl 0906.35002
[9] Gardner R. B.:
The method of equivalence and its applications. CBMS–NSF Regional Conf. in Appl. Math. 58, 1989.
MR 1062197 |
Zbl 0694.53027
[10] Moór A., Pintér L.:
Untersuchungen über den Zusammenhang von Differential– und Funktionalgleichungen. Publ. Math. Debrecen 13 (1966), 207–223.
MR 0206445 |
Zbl 0199.15301
[11] Neuman F.:
Global Properties of Linear Ordinary Differential Equations. Mathematics and Its Applications (East European Series) 52, Kluwer Acad. Publ., Dordrecht–Boston–London, 1991.
MR 1192133 |
Zbl 0784.34009
[12] Posluszny J., Rubel L. A.:
The motion of an ordinary differential equation. J. Differential Equations 34 (1979), 291–302.
MR 0550047
[13] Sharpe R. V.:
Differential geometry. Graduate Texts in Math. 166, Springer Verlag, 1997.
MR 1453120 |
Zbl 0876.53001
[14] Tryhuk V.:
On transformations $z(t)=y(\varphi (t))$ of ordinary differential equations. Czech. Math. J., 50(125) (2000), Praha, 509–518.
MR 1777472 |
Zbl 1079.34505