Article
Keywords:
integral inclusions; contractive set-valued maps; fixed point
Summary:
We consider a nonconvex integral inclusion and we prove a Filippov type existence theorem by using an appropiate norm on the space of selections of the multifunction and a contraction principle for set-valued maps.
References:
[1] Castaing C., Valadier M.:
Convex Analysis and Measurable Multifunctions. LNM 580, Springer, Berlin, 1977.
MR 0467310 |
Zbl 0346.46038
[2] Cernea A.:
A Filippov type existence theorem for infinite horizon operational differential inclusions. Stud. Cerc. Mat. 50 (1998), 15–22.
MR 1837385 |
Zbl 1026.34070
[3] Cernea A.:
An existence theorem for some nonconvex hyperbolic differential inclusions. Mathematica 45(68) (2003), 101–106.
MR 2056043 |
Zbl 1084.34508
[4] Kannai Z., Tallos P.:
Stability of solution sets of differential inclusions. Acta Sci. Math. (Szeged) 63 (1995), 197–207.
MR 1377359 |
Zbl 0851.34015
[5] Lim T. C.:
On fixed point stability for set valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110 (1985), 436–441.
MR 0805266 |
Zbl 0593.47056
[6] Petruşel A.:
Integral inclusions. Fixed point approaches. Comment. Math. Prace Mat., 40 (2000), 147–158.
MR 1810391 |
Zbl 0991.47041
[7] Tallos P.:
A Filippov-Gronwall type inequality in infinite dimensional space. Pure Math. Appl. 5 (1994), 355–362.
MR 1343457
[8] Zhu Q. J.:
A relaxation theorem for a Banach space integral-inclusion with delays and shifts. J. Math. Anal. Appl. 188 (1994), 1–24.
MR 1301713 |
Zbl 0823.34023