Previous |  Up |  Next

Article

Keywords:
commutativity; Drazin inverse; Moore-Penrose inverse; rank equality; matrix expression
Summary:
Necessary and sufficient conditions are presented for the commutativity equalities $A^*A^D = A^DA^*$, $A^{\dag }A^D = A^DA^{\dag }$, $A^{\dag }AA^D = A^DAA^{\dag }$, $AA^DA^* = A^*A^DA$ and so on to hold by using rank equalities of matrices. Some related topics are also examined.
References:
[1] Ben-Israel A., Greville T. N. E.: Generalized Inverses: Theory and Applications. Corrected reprint of the 1974 original, Robert E. Krieger Publishing Co., Inc., Huntington, New York, 1980. MR 0587113 | Zbl 0305.15001
[2] Campbell S. L., Meyer C. D.: EP operators and generalized inverses. Canad. Math. Bull. 18 (1975), 327–333. MR 0405136 | Zbl 0317.15004
[3] Campbell S. L., Meyer C. D.: Generalized Inverses of Linear Transformations. Corrected reprint of the 1979 original, Dover Publications, Inc., New York, 1991. MR 1105324 | Zbl 0417.15002
[4] Castro N., Koliha J. J.: Perturbation of the Drazin inverse for closed linear operators. Integral Equations Operator Theory 36 (2000), 92–106. MR 1736919 | Zbl 1009.47002
[5] Castro N., Koliha J. J., Wei Y.: Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero. Linear Algebra Appl. 312 (2000), 181–189. MR 1759331 | Zbl 0963.15002
[6] Hartwig R. E., Spindelböck K.: Partial isometries, contractions and EP matrices. Linear and Multilinear Algebra 13 (1983), 295–310. MR 0704779 | Zbl 0575.15008
[7] Hartwig R. E., Spindelböck K.: Matrices for which $ A^*$ and $ A^{\dagger }$ can commute. Linear and Multilinear Algebra 14 (1984), 241–256.
[8] Koliha J. J.: Elements of $C^*$-algebras commuting with their Moore-Penrose inverse. Studia Math. 139 (2000), 81–90. MR 1763046 | Zbl 0963.46037
[9] Marsaglia G., Styan G. P. H.: Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra 2 (1974), 269–292. MR 0384840 | Zbl 0297.15003
[10] Rao C. R., Mitra S. K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York, 1971. MR 0338013 | Zbl 0236.15005
[11] Tian Y.: How to characterize equalities for the Moore-Penrose inverse of a matrix. Kyungpook Math. J. 41 (2001), 1–15. MR 1847431 | Zbl 0987.15001
[12] Wong E. T.: Does the generalized inverse of $A$ commute with $A$?. Math. Mag. 59 (1986), 230–232. MR 1572626 | Zbl 0611.15007
Partner of
EuDML logo