[1] Ben-Israel A., Greville T. N. E.:
Generalized Inverses: Theory and Applications. Corrected reprint of the 1974 original, Robert E. Krieger Publishing Co., Inc., Huntington, New York, 1980.
MR 0587113 |
Zbl 0305.15001
[2] Campbell S. L., Meyer C. D.:
EP operators and generalized inverses. Canad. Math. Bull. 18 (1975), 327–333.
MR 0405136 |
Zbl 0317.15004
[3] Campbell S. L., Meyer C. D.:
Generalized Inverses of Linear Transformations. Corrected reprint of the 1979 original, Dover Publications, Inc., New York, 1991.
MR 1105324 |
Zbl 0417.15002
[4] Castro N., Koliha J. J.:
Perturbation of the Drazin inverse for closed linear operators. Integral Equations Operator Theory 36 (2000), 92–106.
MR 1736919 |
Zbl 1009.47002
[5] Castro N., Koliha J. J., Wei Y.:
Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero. Linear Algebra Appl. 312 (2000), 181–189.
MR 1759331 |
Zbl 0963.15002
[6] Hartwig R. E., Spindelböck K.:
Partial isometries, contractions and EP matrices. Linear and Multilinear Algebra 13 (1983), 295–310.
MR 0704779 |
Zbl 0575.15008
[7] Hartwig R. E., Spindelböck K.: Matrices for which $ A^*$ and $ A^{\dagger }$ can commute. Linear and Multilinear Algebra 14 (1984), 241–256.
[8] Koliha J. J.:
Elements of $C^*$-algebras commuting with their Moore-Penrose inverse. Studia Math. 139 (2000), 81–90.
MR 1763046 |
Zbl 0963.46037
[9] Marsaglia G., Styan G. P. H.:
Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra 2 (1974), 269–292.
MR 0384840 |
Zbl 0297.15003
[10] Rao C. R., Mitra S. K.:
Generalized Inverse of Matrices and Its Applications. Wiley, New York, 1971.
MR 0338013 |
Zbl 0236.15005
[11] Tian Y.:
How to characterize equalities for the Moore-Penrose inverse of a matrix. Kyungpook Math. J. 41 (2001), 1–15.
MR 1847431 |
Zbl 0987.15001
[12] Wong E. T.:
Does the generalized inverse of $A$ commute with $A$?. Math. Mag. 59 (1986), 230–232.
MR 1572626 |
Zbl 0611.15007