[1] Ćirić, Lj. B.:
A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267–273.
MR 0356011
[2] Ćirić, Lj. B.:
Quasi-contractions in Banach spaces. Publ. Inst. Math. 21 (1977), 41–48.
MR 0461224
[3] Hichs, L. and Kubicek, J. D.:
On the Mann iteration process in Hilbert spaces. J. Math. Anal. Appl. 59 (1977), 498–504.
MR 0513062
[4] Ishikawa, S.:
Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150.
MR 0336469 |
Zbl 0286.47036
[6] Naimpally, S. A. and Singh, K. L.:
Extensions of some fixed point theorems of Rhoades. J. Math. Anal. Appl. 96 (1983), 437–446.
MR 0719327
[7] Rhoades, B. E.:
Fixed point iterations using infinite matrices. Trans. Amer. Math. Soc. 196 (1974), 161–176.
MR 0348565 |
Zbl 0422.90089
[8] Rhoades, B. E.:
A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc. 226 (1977), 257–290.
MR 0433430 |
Zbl 0394.54026
[9] Rhoades, B. E.:
Extension of some fixed point theorems of Ćirić, Maiti and Pal. Math. Sem. Notes Kobe Univ. 6 (1978), 41–46.
MR 0494051
[10] Rhoades, B. E.:
Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56 (1976), 741–750.
MR 0430880 |
Zbl 0353.47029
[11] Singh, K. L.:
Fixed point iteration using infinite matrices. In “Applied Nonlinear Analysis” (V. Lakshmikantham, Ed.), pp.689–703, Academic Press, New York, 1979.
MR 0537576
[12] Singh, K. L.:
Generalized contractions and the sequence of iterates. In “Nonlinear Equations in Abstract Spaces” (V. Lakshmikantham, Ed.), pp. 439–462, Academic Press, New York, 1978.
MR 0502557
[13] Takahashi, W.:
A convexity in metric spaces and nonexpansive mappings. Kodai Math. Sem. Rep. 22 (1970), 142–149.
MR 0267565