Previous |  Up |  Next

Article

Keywords:
fuzzy sets; fuzzy mappings; fixed point
Summary:
In this paper, we prove common fixed point theorems for fuzzy mappings satisfying a new inequality initiated by Constantin [6] in complete metric spaces.
References:
[1] Arora, S. C., Sharma, V.: Fixed point theorems for fuzzy mappings. Fuzzy Sets and Systems 110 (2000), 127–130. MR 1748116
[2] Beg, I., Azam, A.: Fixed points of asymptotically regular multivalued mappings. J. Austral. Math. Soc. 53 (1992), 313–326. MR 1187851
[3] Bose, R. K., Sahani, D.: Fuzzy mappings and fixed point theorems. Fuzzy Sets and Systems 21 (1987), 53–58. MR 0868355
[4] Chang, S.-S.: Fixed point theorems for fuzzy mappings. Fuzzy Sets and Systems 17 (1985), 181–187. MR 0811539 | Zbl 0579.54034
[5] Chitra, A.: A note on the fixed point theorems for fuzzy mappings. Fuzzy Sets and Systems 19 (1986), 305–308. MR 0848669
[6] Constantin, A.: Common fixed points of weakly commuting mappings in 2-metric spaces. Math. Japonica 36, No. 3 (1991), 507–514. MR 1109238 | Zbl 0763.54031
[7] Heilpern, S.: Fuzzy mappings and fixed point theorem. J. Math. Anal. Appl. 83 (1981), 566–569. MR 0641351 | Zbl 0486.54006
[8] Hicks, T. L.: Multivalued mappings on probabilistic metric spaces. Math. Japon. 46, No. 3 (1997), 413–418. MR 1487290 | Zbl 0910.47051
[9] Iseki, K.: Multi-valued contraction mappings in complete metric spaces. Rend. Sem. Mat. Univ. Padova 53 (1975), 15–19. MR 0410715
[10] Lee, B. S., Cho, S. J.: A fixed point theorems for contractive type fuzzy mappings. Fuzzy Sets and Systems 61 (1994), 309–312. MR 1273252
[11] Markin, J.: A fixed point theorem for set valued mappings. Bull. Amer. Math. Soc. 74 (1968), 639–640. MR 0227825 | Zbl 0159.19903
[12] Nadler, S. B.: Multivalued contraction mappings. Pacific J. Math. 30 (1969), 475–488. MR 0254828
[13] Park, J. Y., Jeong, J. U.: Fixed point theorems for fuzzy mappings. Fuzzy Sets and Systems 87 (1997), 111–116. MR 1441936
[14] Pathak, H. K., Khan, M. S.: Fixed points of fuzzy mappings under Caristi-Kirk type condition. J. Fuzzy Math. 6, No. 1 (1998), 119–126. MR 1609887
[15] Popa, V.: Common fixed points for multifunctions satisfying a rational inequality. Kobe J. Math. 2 (1985), 23–28. MR 0811799 | Zbl 0591.54037
[16] Rhoades, B. E.: A common fixed point theorem for a sequence of fuzzy mappings. Int. J. Math. Math. Sci. 18, No. 3 (1995), 447–450. MR 1331943 | Zbl 0840.47049
[17] Rhoades, B. E.: Fixed points of some fuzzy maps. Soochow J. Math. 22 (1996), 111–115. MR 1380758
[18] Singh, B., Chauhan, M. S.: Fixed points of associated multimaps of fuzzy maps. Fuzzy Sets and Systems 110 (2000), 131–134. MR 1748117
[19] Singh, S. L. and Talwar, R.: Fixed points of fuzzy mappings. Soochow J. Math. 19 (1993), 95–102. MR 1210298
[20] Singh, K. L., Whitfield, J. H. M.: Fixed points for contractive type multivalued mappings. Math. Japon. 27 (1982), 117–124. MR 0649027
[21] Som, T., Mukherjee, R. N.: Some fixed point theorems for fuzzy mappings. Fuzzy sets and Systems 33 (1989), 213–219. MR 1024224
[22] Zadeh, L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353. MR 0219427 | Zbl 0139.24606
Partner of
EuDML logo