Previous |  Up |  Next

Article

Keywords:
linear functional differential equation; antiperiodic type BVP; solvability and unique solvability
Summary:
Nonimprovable, in a certain sense, sufficient conditions for the unique solvability of the boundary value problem \[ u^{\prime }(t)=\ell (u)(t)+q(t),\qquad u(a)+\lambda u(b)=c \] are established, where $\ell :C([a,b];R)\rightarrow L([a,b];R)$ is a linear bounded operator, $q\in L([a,b];R)$, $\lambda \in R_+$, and $c\in R$. The question on the dimension of the solution space of the homogeneous problem \[ u^{\prime }(t)=\ell (u)(t),\qquad u(a)+\lambda u(b)=0 \] is discussed as well.
References:
[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F.: Introduction to the theory of functional differential equations. Nauka, Moscow, 1991, in Russian. MR 1144998 | Zbl 0725.34071
[2] Azbelev N. V., Rakhmatullina L. F.: Theory of linear abstract functional differential equations and aplications. Mem. Differential Equations Math. Phys., 8 (1996), 1–102. MR 1432626
[3] Bravyi E.: A note on the Fredholm property of boundary value problems for linear functional differential equations. Mem. Differential Equations Math. Phys. 20 (2000), 133–135. MR 1789344 | Zbl 0968.34049
[4] Bravyi E., Hakl R., Lomtatidze A.: Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Czechoslovak Math. J., to appear. MR 1923257 | Zbl 1023.34055
[5] Bravyi E., Hakl R., Lomtatidze A.: On Cauchy problem for the first order nonlinear functional differential equations of non–Volterra’s type. Czechoslovak Math. J., to appear. MR 1940049
[6] Bravyi E., Lomtatidze A., Půža B.: A note on the theorem on differential inequalities. Georgian Math. J. 7 4 (2000), 627–631. MR 1811918 | Zbl 1009.34057
[7] Hakl R.: On some boundary value problems for systems of linear functional differential equations. Electron. J. Qual. Theory Differ. Equ. 10 (1999), 1–16. MR 1711999 | Zbl 0948.34040
[8] Hakl R., Kiguradze I., Půža B.: Upper and lower solutions of boundary value problems for functional differential equations and theorems on functional differential inequalities. Georgian Math. J. 7 3 (2000), 489–512. MR 1797786
[9] Hakl R., Lomtatidze A.: A note on the Cauchy problem for first order linear differential equations with a deviating argument. Arch. Math. (Brno) 38 1 (2002), 61–71. MR 1899569 | Zbl 1087.34043
[10] Hakl R., Lomtatidze A., Půža B.: On a periodic boundary value problem for the first order scalar functional differential equation. J. Math. Anal. Appl., submitted.
[11] Hakl R., Lomtatidze A., Půža B.: On periodic solutions of first order linear functional differential equations. Nonlinear Anal. 49 7 (2002), 929–945. MR 1895537 | Zbl 1008.34062
[12] Hakl R., Lomtatidze A., Půža B.: New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Math. Bohem., to appear. MR 1942637 | Zbl 1017.34065
[13] Hakl R., Lomtatidze A., Šremr J. : On an antiperiodic type boundary value problem for first order nonlinear functional differential equations of non–Volterra’s type. Differential Integral Equations, submitted. Zbl 1086.34536
[14] Hakl R., Lomtatidze A., Šremr J.: On a periodic type boundary value problem for first order linear functional differential equations. Nonlinear Oscillations, submitted.
[15] Hakl R., Lomtatidze A., Šremr J.: On a periodic type boundary value problem for first order nonlinear functional differential equations. Nonlinear Anal., to appear. Zbl 1022.34058
[16] Hale J.: Theory of functional differential equations. Springer–Verlag, New York-Heidelberg-Berlin, 1977. MR 0508721 | Zbl 0352.34001
[17] Kiguradze I.: On periodic solutions of first order nonlinear differential equations with deviating arguments. Mem. Differential Equations Math. Phys. 10 (1997), 134–137. Zbl 0927.34053
[18] Kiguradze I.: Initial and boundary value problems for systems of ordinary differential equations I. Metsniereba, Tbilisi, 1997, in Russian. MR 1484729
[19] Kiguradze I., Půža B.: On boundary value problems for systems of linear functional differential equations. Czechoslovak Math. J. 47 2 (1997), 341–373. MR 1452425 | Zbl 0930.34047
[20] Kiguradze I., Půža B.: On periodic solutions of systems of linear functional differential equations. Arch. Math. (Brno) 33 3 (1997), 197–212. MR 1478773
[21] Kiguradze I., Půža B.: Conti–Opial type theorems for systems of functional differential equations. Differentsial’nye Uravneniya 33 2 (1997), 185–194, in Russian. MR 1609904
[22] Kiguradze I., Půža B.: On boundary value problems for functional differential equations. Mem. Differential Equations Math. Phys. 12 (1997), 106–113. MR 1636865 | Zbl 0909.34054
[23] Kiguradze I., Půža B.: On periodic solutions of nonlinear functional differential equations. Georgian Math. J. 6 1 (1999), 47–66. MR 1672994
[24] Kiguradze I., Půža B.: On periodic solutions of systems of differential equations with deviating arguments. Nonlinear Anal. 42 2 (2000), 229–242. MR 1773980
[25] Kolmanovskii V., Myshkis A.: Introduction to the theory and applications of functional differential equations. Kluwer Academic Publishers, 1999. MR 1680144 | Zbl 0917.34001
[26] Mawhin J.: Periodic solutions of nonlinear functional differential equations. J. Differential Equations 10 (1971), 240–261. MR 0294823 | Zbl 0223.34055
[27] Schwabik S., Tvrdý M., Vejvoda O.: Differential and integral equations: boundary value problems and adjoints. Academia, Praha, 1979. MR 0542283 | Zbl 0417.45001
Partner of
EuDML logo