Article
Keywords:
meromorphic function; uniqueness; weighted sharing
Summary:
In the paper we prove a uniqueness theorem for meromorphic functions which provides an answer to a question of H. X. Yi.
References:
[1] Chuang C. T.:
Une généralisation d’une inégalité de Nevanlinna. Scientia Sinica XIII (1964), 887–895.
MR 0171922 |
Zbl 0146.10202
[2] Fang M. L., Lahiri I.:
The unique range set for certain meromorphic functions. Indian J. Math. (to appear).
MR 2035902
[3] Gross F.:
Factorization of meromorphic functions and some open problems. Complex Analysis (Proc. Conf. Univ. Kentucky, Lexington, Kentucky, 1976), 51–69, Lecture Notes in Math. 599, Springer-Berlin (1977).
MR 0450529
[5] Lahiri I.:
The range set of meromorphic derivatives. Northeast. Math. J. 14 (3) (1998), 353–360.
MR 1685269 |
Zbl 0934.30027
[6] Lahiri I.:
Weighted sharing and uniqueness of meromorphic functions. Nagoya Math. J. 161 (2001), 193–206.
MR 1820218 |
Zbl 0981.30023
[7] Lahiri I.:
Weighted value sharing and uniqueness of meromorphic functions. Complex Variables Theory Appl.46 No.3 (2001), 241–253.
MR 1869738 |
Zbl 1025.30027
[8] Li P., Yang C. C.:
Some further results on the unique range sets of meromorphic functions. Kodai Math. J. 13 (1995), 437–450.
MR 1362919 |
Zbl 0849.30025
[9] Yang C. C.:
On deficiencies of differential polynomials II. Math. Z. 125 (1972), 107–112.
MR 0294642 |
Zbl 0217.38402
[11] Yi H. X.:
Unicity theorems for meromorphic or entire functions. Bull. Austral. Math. Soc. 49 (1994), 257–265.
MR 1265362 |
Zbl 0809.30024
[12] Yi H. X.:
Unicity theorems for meromorphic or entire functions II. Bull. Austral. Math. Soc. 52 (1995), 215–224.
MR 1348480 |
Zbl 0844.30022