Previous |  Up |  Next

Article

Keywords:
multivalued map; random fixed point; Frechet space
Summary:
In this paper we prove a general random fixed point theorem for multivalued maps in Frechet spaces. We apply our main result to obtain some common random fixed point theorems. Our main result unifies and extends the work due to Benavides, Acedo and Xu [4], Itoh [8], Lin [12], Liu [13], Tan and Yuan [20], Xu [23], etc.
References:
[1] Beg I., Shahzad N.: Some random approximation theorems with applications. Nonlinear Anal. 35 (1999), 609–616. MR 1656922 | Zbl 0931.60054
[2] Beg I., Shahzad N.: Random fixed points of weakly inward operators in conical shells. J. App. Math. Stochastic Anal. 8 (1995), 261–264. MR 1342645 | Zbl 0828.47044
[3] Beg I., Shahzad N.: Applications of the proximity map to random fixed point theorems in Hilbert spaces. J. Math. Anal. Appl. 196 (1995), 606–613. MR 1362709
[4] Benavides T. D., Acedo G. L., Xu H. K.: Random fixed points of set-valued operators. Proc. Amer. Math. Soc. 124 (1996), 831–838. MR 1301487 | Zbl 0841.47032
[5] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), 641–657. MR 0413273 | Zbl 0339.60061
[6] Browder F. E.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Amer. Math. Soc. 74 (1968), 660–665. MR 0230179 | Zbl 0164.44801
[7] Himmelberg C. J.: Measurable relations. Fund. Math. 87 (1975), 53–72. MR 0367142 | Zbl 0296.28003
[8] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261–273. MR 0528687 | Zbl 0407.60069
[9] Itoh S.: A random fixed point theorem for a multivalued contraction mapping. Pacific J. Math. 68 (1977), 85–90. MR 0451228 | Zbl 0335.54036
[10] Kuratowski K., Ryll-Nardzewski C.: A general theorem on selectors. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 379–403. MR 0188994 | Zbl 0152.21403
[11] Lami Dozo E.: Multivalued nonexpansive mappings with Opial’s condition. Proc. Amer. Math. Soc. 38 (1973), 286–292. MR 0310718
[12] Lin T. C.: Random approximations and random fixed point theorems for continuous 1-set-contractive random maps. Proc. Amer. Math. Soc. 123 (1995), 1167–1176. MR 1227521 | Zbl 0834.47049
[13] Liu L. S.: Some random approximations and random fixed point theorems for 1-set-contractive random operators. Proc. Amer. Math. Soc. 125 (1997), 515–521. MR 1350953 | Zbl 0869.47031
[14] Opial Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967), 595–597. MR 0211301 | Zbl 0179.19902
[15] Papageorgiou N. S.: Random fixed points and random differential inclusions. Int. J. Math. Math. Sci. 11 (1988), 551–560. MR 0947287 | Zbl 0658.60090
[16] Rudin W.: Functional Analysis. McGraw Hill, New York, 1973. MR 0365062 | Zbl 0253.46001
[17] Shahzad N.: Random fixed point theorems for various classes of 1-set-contractive maps in Banach spaces. J. Math. Anal. Appl. 203 (1996), 712–718. MR 1417125 | Zbl 0893.47037
[18] Shahzad N., Khan L. A.: Random fixed points for 1-set-contractive random maps in Frechet spaces. J. Math. Anal. Appl. 231 (1999), 68–75. MR 1676737
[19] Shahzad N., Latif S.: Random fixed points for several classes of 1-ball-contractive and 1-set-contractive random maps. J. Math. Anal. Appl. 237 (1999), 83–92. MR 1708163 | Zbl 1115.47314
[20] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximation. Stochastic Anal. Appl. 15 (1997), 103–123. MR 1429860 | Zbl 0892.47060
[21] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximation in cones. J. Math. Anal. Appl. 185 (1994), 378–390. MR 1283065 | Zbl 0856.47036
[22] Thomas G. E. F.: Integration on functions with values in locally convex Suslin spaces. Trans. Amer. Math. Soc. 212 (1975), 61–81. MR 0385067
[23] Xu H. K.: Some random fixed point theorems for condensing and nonexpansive operators. Proc. Amer. Math. Soc. 110 (1990), 495–500. MR 1021908 | Zbl 0716.47029
[24] Xu H. K., Beg I.: Measurability of fixed point sets of multivalued random operators. J. Math. Anal. Appl. 225 (1998), 62–72. MR 1639289 | Zbl 0913.47057
Partner of
EuDML logo