Previous |  Up |  Next

Article

Keywords:
common fixed points; $\delta $-compatible mappings; sub-compatible mappings; complete convex metric spaces
Summary:
This work is considered as a continuation of [19,20,24]. The concepts of $\delta $-compatibility and sub-compatibility of Li-Shan [19, 20] between a set-valued mapping and a single-valued mapping are used to establish some common fixed point theorems of Greguš type under a $\phi $-type contraction on convex metric spaces. Extensions of known results, especially theorems by Fisher and Sessa [11] (Theorem B below) and Jungck [16] are thereby obtained. An example is given to support our extension.
References:
[1] Banas, J. and El-Sayed , W. G.: Solvability of Hammerstein integral equation in the class of functions of locally bounded variation. Boll. Un. Mat. Ital. 7, 5-B (1991), 893–904. MR 1146779
[2] Beg, I. and Shahzad, W.: An application of a fixed point theorem to best simultaneous approximation. Approx. Theory Appl.$ \& $ its Appl. 10, No. 3 (1994), 1–4. MR 1308834
[3] Chen, M. J. and Park, S.: A unified approach to generalized quasi-variational inequalities. Comm. Appl. Nonlinear Anal. 4, No. 2 (1997), 103–118. MR 1442102
[4] Ciric, L. B.: On a common fixed point theorem of a Greguš type. Publ. Inst. Math. (Beograd) 49, No. 63 (1991), 174–178. MR 1127395 | Zbl 0753.54023
[5] Ciric, L. B.: On Diviccaro, Fisher and Sessa open questions. Arch. Math. (Brno) 29, No.3-4 (1993), 145–152. MR 1263115 | Zbl 0810.47051
[6] Ciric, L. B.: On some discontinuous fixed point mappings in convex metric spaces. Czechoslovak Math. J. 43, No. 118 (1993), 319–326. MR 1211753 | Zbl 0814.47065
[7] Ciric, L. B.: Nonexpansive type mappings and a fixed point theorem in convex metric space. Rend. Accad. Naz. Sci. XL Mem. Math. Appl. (5) 15, fasc. 1 (1995), 263–271. MR 1387560
[8] Davies, R. O. and Sessa, S.: A common fixed point theorem of Greguš type for compatible mappings. Facta Univ. Ser. Math. Inform. 7 (1992), 99–106. MR 1346598
[9] Diviccaro, M. L., Fisher, B. and Sessa, S.: A common fixed point theorem of Greguš type. Publ. Math. Debrecen 34, No. 1-2 (1987), 83–89. MR 0901008
[10] Fisher, B.: Common fixed points of mappings and set-valued mappings. Rostock. Math. Kolloq. 18 (1981), 69–77. MR 0655385 | Zbl 0479.54025
[11] Fisher, B. and Sessa, S.: On a fixed point theorem of Greguš. Int. J. Math. Math. Sci. 9, No. 1 (1986), 23–28. MR 0837098
[12] Fisher, B. and Sessa, S.: Common fixed point theorems for weakly commuting mappings. Period. Math. Hungar. 20, No. 3 (1989), 207–218. MR 1028958
[13] Greguš, M.: A fixed point theorem in Banach space. Boll. Un. Math. Ital. 17- A, No. 5 (1980), 193–198. MR 0562137
[14] Guay, M. D., Singh, K. L. and Whitfield, J. H.: Fixed point theorems for nonexpansive mappings in convex metric spaces. Proc. Conference on Nonlinear Analysis 60 (1982), 179–189. MR 0689554
[15] Jungck, G.: Compatible mapppings and common fixed points. Int. J. Math. Math. Sci. 9 (1986), 771–779. MR 0870534
[16] Jungck, G.: On a fixed point theorem of Fisher and Sessa. Int. J. Math. Math. Sci. 13 (1990), 497–500. MR 1068012 | Zbl 0705.54034
[17] Jungck, G. and Rhoades, B. E.: Some fixed point theorems for compatible maps. Int. J. Math. Math. Sci. 16, No. 3 (1993), 417–428. MR 1225486
[18] Khan, M. S. and Imdad, M.: A common fixed point theorem for a class of mappings. Indian J. Pure Appl. Math. 14 (1983), 1220–1227. MR 0720454
[19] Liu Li-Shan: On common fixed points of single-valued mappings and set-valued mappings. J. Qufu Norm. Univ. Nat. Sci. Ed. 18, No. 1 (1992), 6–10. MR 1160972
[20] Liu Li-Shan: Common fixed point theorems for (sub) compatible and set-valued generalized nonexpansive mappings in convex metric spaces. Appl. Math. Mech. 14, No. 7 (1993), 685–692. MR 1247315
[21] Mukherjee, R. N. and Verma, V.: A note on fixed point theorem of Greguš. Math. Japon. 33 (1988), 745–749. MR 0972387
[22] Murthy, P. P., Cho, Y. J. and Fisher, B.: Common fixed points of Greguš type mappings. Glas. Math. 30, No. 50 (1995), 335–341. MR 1381358
[23] Pathak, H. K. and Fisher, B.: Common fixed point theorems with applications in dynamic programming. Glas. Math. 31, No. 51 (1996), 321–328. MR 1444983
[24] Rashwan, R. A. and Ahmed, M. A.: Common fixed points for generalized contraction mappings in convex metric spaces. J. Qufu Norm. Univ. Ed. 24, No. 3 (1998), 15–21. MR 1665104
[25] Sessa, S.: On a weak commutativity condition of mappings in fixed point considerations. Publ. Inst. Math. (Beograd) 32, No. 46 (1982), 149–153. MR 0710984 | Zbl 0523.54030
[26] Sessa, S. and Fisher, B.: Common fixed points of two mappings on Banach spaces. J. Math. Phys. Sci. 18 (1984), 353–360. MR 0803962
[27] Sessa, S., Khan, M. S. and Imdad, M.: Common fixed point theorem with a weak commutativity condition. Glas. Mat. 21, No. 41 (1986), 225–235. MR 0866767
[28] Takahashi, W.: A convexity in metric space and nonexpansive mappings. Kodai Math. Semin. Rep. 22 (1970), 142–149. MR 0267565 | Zbl 0268.54048
Partner of
EuDML logo