Previous |  Up |  Next

Article

Keywords:
prime submodule; second submodule; injective and flat module
Summary:
In this paper the concept of the second submodule (the dual notion of prime submodule) is introduced.
References:
[1] Lu C.-P.: Prime submodules of modules. Comment. Math. Univ. St. Pauli 33 (1984), 61–69. MR 0741378 | Zbl 0575.13005
[2] Lu C.-P.: Spectra of modules. Commun. Algebra 23 (1995), 3741–3752. MR 1348262 | Zbl 0853.13011
[3] MacDonald I.-G.: Secondary representation of modules over a commutative ring. Sympos. Math. XI (1973), 23–43. MR 0342506 | Zbl 0271.13001
[4] Marcelo A., Masque J.: Prime submodules, the descent invariant, and modules of finite length. J. Algebra 189 (1997), 273–293. MR 1438177 | Zbl 0878.13005
[5] Matsumura H.: Commutative ring theory. Cambridge University Press, Cambridge 1986. MR 0879273 | Zbl 0603.13001
[6] McCasland R. L., Smith P. F.: Prime submodules of Noetherian modules. Rocky Mountain J. Math. 23 (1993), 1041–1062. MR 1245463 | Zbl 0814.16017
[7] Rotman J. J.: An introduction to homological algebra. Academic Press, 1979. MR 0538169 | Zbl 0441.18018
[8] Tiras Y., Tercan A., Harmanci A.: Prime modules. Honam Math. J. 18 (1996), 5–15. MR 1402357 | Zbl 0948.13004
[9] Vasconcelos W.: On finitely generated flat modules. Trans. Amer. Math. Soc. 138 (1969), 505–512. MR 0238839 | Zbl 0238.13011
[10] Yassemi S.: Coassociated primes of modules over commutative rings. Math. Scand. 10 (1997), 175–187. MR 1481103
Partner of
EuDML logo