Previous |  Up |  Next

Article

Keywords:
elliptic system; Leray-Schauder degree; maximum principle
Summary:
In this paper we consider the existence of nonzero solutions of an undecoupling elliptic system with zero Dirichlet condition. We use Leray-Schauder Degree Theory and arguments of Measure Theory. We will show the existence of positive solutions and we give applications to biharmonic equations and the scalar case.
References:
[1] Adams R.: Sobolev Spaces. Academic Press, 1975. MR 0450957 | Zbl 0314.46030
[2] Brown K. J.: Spatially inhomogeneous steady-state solutions for systems of equations describing interacting populations. J. of Math. Anal. and Appl. 95 (1983), 251–264. MR 0710432 | Zbl 0518.92017
[3] Costa D. & Magalhães: A variational approach to subquadratic perturbations of elliptic systems. J. Differential Equations 111 (1994), No. 1, July 1, 103–122. MR 1280617
[4] De Figueiredo D. & Mitidieri E.: A maximum principle for an elliptic system and applications to semilinear problems. SIAM J. Math. Anal. 17 (1986), 836–849. MR 0846392
[5] Fleckinger J., Hernández J. & Thelin F. de: On maximum principle and existence of positive solutions for some cooperative elliptic systems. Differential and Integral Equations 8 (1995), 69–85. MR 1296110
[6] Krasnosel’skii M.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, 1964. MR 0159197
[7] Krasnosels’kii M. & Zabreico F.: Geometrical Methods of Nonlinear Analysis. Springer-Verlag, 1984. MR 0736839
[8] Lazer A. & Mckena P. J.: On steady-state solutions of a system of reaction-diffusion equations from biology. Nonlinear Anal. 6 (1982), 523–530. MR 0664014
[9] Lin F. H.: On the elliptic equation . $D_{i}\left[ a_{ij}D_{j}U\right] -k\left( x\right) U+k\left( x\right) U^{p}=0,$ Proc. Amer. Math. Soc. 95 (1985), 219–226. MR 0801327 | Zbl 0584.35031
[10] Mitidieri E.: Nonexistence of positive solutions of semilinear elliptic systems in . $\mathbb{R}^{n},$ Differential Integral Equations (in press). MR 1371702 | Zbl 0848.35034
[11] Mitidieri E.: A Rellich type identity and applications. Comm. Partial Differential Equations 18 (1993), 125–151. MR 1211727 | Zbl 0816.35027
[12] Naito M.: A note on bounded positive entire solutions of semilinear elliptic equations. Hiroshima Math. J. 14 (1984), 211–214. MR 0750398 | Zbl 0555.35044
[13] Ni W. M.: On the elliptic equation $\Delta u+K \left( x\right) u^{\frac{n+2}{n-2}}=0,$ its generalizations and applications in geometry. Indiana Univ. Math. J. 31 (1982), 493–529. MR 0662915
[14] Pucci P. & Serrin J.: A general variational identity. Indiana Univ. Math. J. 35 (1986), 681–703. MR 0855181
[15] Rothe F.: Global existence of branches of stationary solutions for a system of reaction-diffusion equations from biology. Nonlinear Anal. 5 (1981), 487–498. MR 0613057 | Zbl 0471.35031
[16] Smoller J.: Shock Waves And Reaction-Diffusion Equations. Springer-Verlag, 1983. MR 0688146 | Zbl 0508.35002
[17] Soto H. & Yarur C.: Some existence results of semilinear elliptic equations. Rendiconti di Matematica 15 (1995), 109–123. MR 1330182
[18] Yarur C.: Nonexistence of positive solutions for a class of semilinear elliptic systems. Electron. J. Differential Equations 1996 (1996), No. 08, 1–22. MR 1405040
[19] Zuluaga M.: On a nonlinear elliptic system: resonance and bifurcation cases. Comment. Math. Univ. Carolin. 40 (1999), No. 4, 701–711. MR 1756546 | Zbl 1064.35052
[20] Zuluaga M.: A nonlinear undecoupling elliptic system at resonance. Russian J. Math. Phys. 6 (1999), No. 3, 353–362. MR 1816949 | Zbl 1059.35507
[21] Zuluaga M.: Nonzero solutions of a nonlinear elliptic system at resonance. Nonlinear Anal. 31 (1998), No. 3/4, 445–454. MR 1487555 | Zbl 0921.35051
Partner of
EuDML logo