Previous |  Up |  Next

Article

References:
1. P. Constantin C. Foias B. Nicolaenko, and R. Temam: Nouveaux resultats sur les variétés inertielles pour les équations différentielles dissipatives. (New results on the inertial manifolds for dissipative differential equations), C. R. Acad. Sci., Paris, Ser. I 302 (1986), 375–378. MR 0838393
2. P. Constantin C. Foias B. Nicolaenko, and R. Temam: Integral manifolds and inertial manifolds for dissipative partial differential equations. Applied Mathematical Sciences, vol. 70, Springer, 1989. MR 0966192
3. C. Foias B. Nicolaenko G.R. Sell, and R. Temam: Variétés inertielles pour l’équation de Kuramoto-Sivashinsky. (Inertial manifolds for the Kuramoto-Sivashinsky equation), C. R. Acad. Sci., Paris, Ser. I 301 (1985), 285–288. MR 0803219
4. C. Foias G.R. Sell, and R. Temam: Variétés inertielles des équations différentielles dissipatives. (Inertial manifolds for dissipative differential equations), C. R. Acad. Sci., Paris, Ser. I 301 (1985), 139–141. MR 0801946
5. C. Foias G.R. Sell, and R. Temam: Inertial manifolds for nonlinear evolutionary equations. J. of Differential Equations 73 (1988), 309–353. MR 0943945
6. C. Foias G.R. Sell, and E.S. Titi: Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations. J. of Dynamics and Differential Equations 1 (1989), no. 2, 199–244. MR 1010966
7. D. Henry: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, vol. 850, Springer, 1981. MR 0610244 | Zbl 0456.35001
8. N. Koksch: A comparison principle approach to the existence and smootheness of integral manifolds. Habilitation, Fak. Mathematik und Naturwissenschaften der TU Dresden, 1999.
9. M. Miklavčič: Applied functional analysis and partial differential equations. World Scientific, Singnapur, New Jersey, London, Hong Kong, 1998. MR 1784426
10. H. Ninomiya: Some remarks on inertial manifolds. J. Math. Kyoto Univ. 32 (1992), no. 4, 667–688. MR 1194108 | Zbl 0815.35037
11. J.C. Robinson: Inertial manifolds and the cone condition. Dyn. Syst. Appl. 2 (1993), no. 3, 311–330. MR 1233854 | Zbl 0787.34036
12. J.C. Robinson: The asymptotic completeness of inertial manifolds. Nonlinearity 9 (1996), 1325–1340. MR 1416479 | Zbl 0898.35016
13. A.V. Romanov: Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations. Russ. Acad. Sci., Izv., Math. 43 (1994), no. 1, 31–47. MR 1243350
14. R. Temam: Infinite-dimensional dynamical systems in mechanics and physics. 2nd ed., Applied Mathematical Sciences, vol. 68, Springer, New York, 1997. MR 1441312
Partner of
EuDML logo