Previous |  Up |  Next

Article

Title: The generalized coincidence index --- application to a boundary value problem (English)
Author: Gabor, Dorota
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 5
Year: 2000
Pages: 447-460
.
Category: math
.
MSC: 34B15
MSC: 34G20
MSC: 47H09
MSC: 47H11
MSC: 47J05
MSC: 55M25
idZBL: Zbl 1090.34576
idMR: MR1822813
.
Date available: 2008-06-06T22:27:02Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107758
.
Reference: 1. R. R. Akhmerov M. I. Kamenskii A. S. Potapov A. E. Rodkina B. N. Sadovskii: Measures of noncompactness and condensing operators.Birkhäuser Verlag, Basel-Boston-Berlin 1992. MR 1153247
Reference: 2. Yu. G. Borisovich B. D. Gelman A. D. Myshkis, V. V. Obukhovskii: Topological methods in the fixed point theory of multivalued mappings.Russian Math. Surveys 35 (1980), 65-143. MR 0565568
Reference: 3. D. Gabor W. Kryszewski: A coincidence Theory involving Fredholm operators of nonnegative index.Topol. Methods Nonlinear Anal. 15, 1 (2000), 43-59. MR 1786250
Reference: 4. D. Gabor: The coincidence index for fundamentally contractible multivalued maps with nonconvex values.to appear in Ann. Polon. Math. Zbl 0969.47041, MR 1821162
Reference: 5. D. Gabor: Coincidence points of Fredholm operators and noncompact set-valued maps.(in Polish), Ph.D. Thesis, N. Copernicus University, Toruń 2000.
Reference: 6. K. Gęba I. Massabo A. Vignoli: Generalized topological degree and bifurcation.Proc. Conf. on Nonlinear Anal. Appl., Maratea Italy, 1986, D. Reidel Publ. Co., 55-73. MR 0852570
Reference: 7. S-T. Hu: Homotopy theory.Academic Press, New York 1959. Zbl 0088.38803, MR 0106454
Reference: 8. W. Kryszewski: Homotopy properties of set-valued mappings.Wyd. Uniwersytetu Mikolaja Kopernika, Toruń 1997.
Reference: 9. J. Mawhin: Topological degree methods in nonlinear boundary value problems.Conf. Board Math. Sc. 40, Amer. Math. Soc., Providence, Rhode Island 1979. Zbl 0414.34025, MR 0525202
Reference: 10. T. Pruszko: Some applications of the topological degree theory to multi-valued boundary value problems.Dissertationes Math. 229, 1-52. Zbl 0543.34008
.

Files

Files Size Format View
ArchMathRetro_036-2000-5_11.pdf 273.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo