Previous |  Up |  Next

Article

Keywords:
Bott-Virasoro Group; Ito equation
Summary:
The Ito equation is shown to be a geodesic flow of $L^2$ metric on the semidirect product space ${\widehat{{\it Diff}^s(S^1) \bigodot C^{\infty }(S^1)}}$, where ${\it Diff}^s(S^1)$ is the group of orientation preserving Sobolev $H^s$ diffeomorphisms of the circle. We also study a geodesic flow of a $H^1$ metric.
References:
[1] Antonowicz M., Fordy A.: Coupled KdV equation with multi-Hamiltonian structures. Physica 28D (1987), 345–357. MR 0914454
[2] Arbarello E., De Concini C., Kac V. G., Procesi C.: Moduli space of curves and representation theory. Comm. Math. Phys. 117 (1988), 1–36. MR 0946992
[3] Arnold V. I.: Mathematical methods of classical mechanics. Second edition, Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, 1989. MR 0997295
[4] Camassa R., Holm D.: A completely integrable dispersiveshallow water equation with peaked solutions. Phys. Rev. Lett. 71 (1993), 1661–1664. MR 1234453
[5] Cendra H., Holm D., Marsden J., Ratiu T.: Lagrangian reduction, the Euler-Poincar’e equations and semidirect products. to appear in the AMS Arnold Volume II, and all other references therein.
[6] Ebin D., Marsden J.: Groups of diffeomorphisms and themotion of an incompressible fluid. Ann. Math. 92 (1970), 102–163. MR 0271984
[7] Guha P.: Diffeomorphism with some Sobolev metric, geodesic flow and integrable systems. IHES/M/98/69.
[8] Harnad J., Kupershmidt B. A.: Symplectic geometries on $T^{\ast }G$, Hamiltonian group actions and integrable systems. J. Geom. Phys. 16 (1995), 168-206. MR 1330839 | Zbl 0829.53027
[9] Ito M.: Symmetries and conservation laws of a coupled nonlinear wave equation. Phys. Lett. 91A (1982), 335–338. MR 0670869
[10] Kirillov A. A.: Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments. Lect. Notes in Math. 970 (1982), Springer-Verlag, 101–123. MR 0699803 | Zbl 0498.22017
[11] Kirillov A. A.: Orbits of the group of diffeomorphisms of a circle and local superalgebras. Func. Anal. Appl. 15 (1980), 135–137.
[12] Kouranbaeva S.: The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. Math-ph/9807021. Zbl 0958.37060
[13] Marcel P., Ovsienko V., Roger C.: Extension of the Virasoro and Neveu-Schwartz algebras and generalized Sturm-Liouvilleoperators. Lett. Math. Phys. 40 (1997), 31–39. MR 1445965
[14] Misiolek G.: A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24 (1998), 203–208. MR 1491553 | Zbl 0901.58022
[15] Ovsienko V. Yu., Khesin B. A.: KdV super equation as an Euler equation. Funct. Anal. Appl. 21 (1987), 329–331. MR 0925082
[16] Ovsienko V. Yu., Rogers C.: Extension of Virasoro group and Virasoro algebra by modules of tensor densities on $S^1$. Func. Anal. Appl.
[17] Shkoller S.: Geometry and the curvature of diffeomorphismgroups with $H^1$ metric and mean hydrodynamics. Math. AP/9807078.
[18] Segal G.: Unitary representations of some infinite dimensional groups. Comm. Math. Phys. 80 (1981), 301–342. MR 0626704 | Zbl 0495.22017
Partner of
EuDML logo