Previous |  Up |  Next

Article

Keywords:
Riemannian manifold; conformally flat space; pseudo-symmetric space; warped product
Summary:
An explicit classification of the spaces in the title is given. The resulting spaces are locally products or locally warped products of the real line and two-dimensional spaces of constant curvature.
References:
[1] Boeckx E., Kowalski O., Vanhecke L.: Riemannian Manifold of Conullity Two. World Scientific, Singapore, 1996. MR 1462887
[2] Deprez J., Deszcz R., Verstraelen L.: Examples of pseudo-symmetric conformally flat warped products. Chinese J. Math 17(1989), 51–65. MR 1007875 | Zbl 0678.53022
[3] Deszcz R.: On pseudo-symmetric spaces. Bull. Soc. Math. Belgium, Série A. 44(1992), 1–34.
[4] Eisenhart L. P.: Riemannian Geometry. Princeton University, Sixth Printing 1966. (First Printing 1925.) MR 1487892
[5] Hájková V.: Foliated semi-symmetric spaces in dimension 3. (in Czech), Doctoral Thesis, Prague, 1995.
[6] Kowalski O.: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. Nagoya Math. J. 132(1993), 1–36. MR 1253692
[7] Kowalski O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. Czechoslovak Math. J. 46(121) (1996), 427–474. (Preprint 1991). MR 1408298 | Zbl 0879.53014
[8] Kowalski O., Sekizawa M.: Locally isometry classes of Riemannian 3-manifolds with constant Ricci eigenvalues $\rho _1=\rho _2\ne \rho _3>0$. Arch. Math. 32(1996), 137–145. MR 1407345
[9] Kowalski O., Sekizawa M.: Riemannian 3-manifolds with $c$-conullity two. Bollenttino, U.M.I., (7)11-B (1997), Suppl. face. 2, 161–184. MR 1456259 | Zbl 0879.53034
[10] Kowalski O., Sekizawa M.: Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces. Rendiconti di Matematica, Serie VII, Vol.17, Roma (1997), 477–512. MR 1608724 | Zbl 0889.53026
[11] Kowalski O., Sekizawa M.: Pseudo-symmetric spaces of constant type in dimension three-non-elliptic spaces. Bull. Tokyo Gakugei University Sect.IV. 50(1998), 1–28. MR 1656076 | Zbl 0945.53020
[12] Kowalski O., Sekizawa M.: Pseudo-symmetric Spaces of Constant Type in Dimension Three. Personal Note, Charles University-Tokyo Gakugei University, Prague-Tokyo, 1998. Zbl 0945.53020
[13] Mikeš J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 1996, 311–333. MR 1384327 | Zbl 0866.53028
[14] Milnor J.: Curvatures of left invarinat metrics on Lie groups. Adv. Math. 21(1976), 293–329. MR 0425012
[15] O’Neill B.: Semi-Riemannian Geometry With Applications to Relativity. Academic Press, New York-London, 1983. MR 0719023 | Zbl 0531.53051
[16] Takagi H.: Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tôhoku Math. Journ. 27(1975), 103–110. MR 0442852 | Zbl 0323.53037
Partner of
EuDML logo