[1] Boeckx E., Kowalski O., Vanhecke L.:
Riemannian Manifold of Conullity Two. World Scientific, Singapore, 1996.
MR 1462887
[2] Deprez J., Deszcz R., Verstraelen L.:
Examples of pseudo-symmetric conformally flat warped products. Chinese J. Math 17(1989), 51–65.
MR 1007875 |
Zbl 0678.53022
[3] Deszcz R.: On pseudo-symmetric spaces. Bull. Soc. Math. Belgium, Série A. 44(1992), 1–34.
[4] Eisenhart L. P.:
Riemannian Geometry. Princeton University, Sixth Printing 1966. (First Printing 1925.)
MR 1487892
[5] Hájková V.: Foliated semi-symmetric spaces in dimension 3. (in Czech), Doctoral Thesis, Prague, 1995.
[6] Kowalski O.:
A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. Nagoya Math. J. 132(1993), 1–36.
MR 1253692
[7] Kowalski O.:
An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. Czechoslovak Math. J. 46(121) (1996), 427–474. (Preprint 1991).
MR 1408298 |
Zbl 0879.53014
[8] Kowalski O., Sekizawa M.:
Locally isometry classes of Riemannian 3-manifolds with constant Ricci eigenvalues $\rho _1=\rho _2\ne \rho _3>0$. Arch. Math. 32(1996), 137–145.
MR 1407345
[9] Kowalski O., Sekizawa M.:
Riemannian 3-manifolds with $c$-conullity two. Bollenttino, U.M.I., (7)11-B (1997), Suppl. face. 2, 161–184.
MR 1456259 |
Zbl 0879.53034
[10] Kowalski O., Sekizawa M.:
Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces. Rendiconti di Matematica, Serie VII, Vol.17, Roma (1997), 477–512.
MR 1608724 |
Zbl 0889.53026
[11] Kowalski O., Sekizawa M.:
Pseudo-symmetric spaces of constant type in dimension three-non-elliptic spaces. Bull. Tokyo Gakugei University Sect.IV. 50(1998), 1–28.
MR 1656076 |
Zbl 0945.53020
[12] Kowalski O., Sekizawa M.:
Pseudo-symmetric Spaces of Constant Type in Dimension Three. Personal Note, Charles University-Tokyo Gakugei University, Prague-Tokyo, 1998.
Zbl 0945.53020
[13] Mikeš J.:
Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 1996, 311–333.
MR 1384327 |
Zbl 0866.53028
[14] Milnor J.:
Curvatures of left invarinat metrics on Lie groups. Adv. Math. 21(1976), 293–329.
MR 0425012
[15] O’Neill B.:
Semi-Riemannian Geometry With Applications to Relativity. Academic Press, New York-London, 1983.
MR 0719023 |
Zbl 0531.53051
[16] Takagi H.:
Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tôhoku Math. Journ. 27(1975), 103–110.
MR 0442852 |
Zbl 0323.53037