[1] Igošin, V. I.: Selfduality of lattices of intervals of finite lattices. Inst. matem. Sibir. Otdel. AN SSSR, Meždunarodnaja konferencija po algebre posvjaščennaja pamjati A. I. Maĺceva, Tezisyy dokladov po teoriji modelej i algebraičeskich sistem, Novosibirsk 1989, s. 48.
[2] Igošin, V. I.: Lattices of intervals and lattices of convex sublattices of lattices. Uporjadočennyje množestva i rešotki. Saratov 6 (1990), 69–76.
[3] Igošin, V. I.:
Identities in interval lattices of lattices. Coll. Math. Soc. J. Bolyai 33 (Contributions to Lattice Theory), Szeged 1980 (1983), 491–501.
MR 0724279
[4] Igošin, V. I.: On lattices with restriction on their intervals. Coll. Math. Soc. J. Bolyai 43 (Lectures in Universal Algebra), Szeged 1983 (1986), 209–216.
[5] Igošin, V. I.:
Algebraic characteristic of lattices of intervals. Uspechi matem. nauk 40 (1985), 205–206.
MR 0795195
[6] Igošin, V. I.:
Semimodularity in lattices of intervals. Math. Slovaca 38 (1988), 305–308.
MR 0978760
[7] Jakubík, J.:
Selfduality of the system of intervals of a partially ordered set. Czechoslov. Math. J. 41 (1991), 135–140.
MR 1087633
[8] Jakubík, J., Lihová, J.:
Systems of intervals of partially ordered sets. Math. Slovaca 46 (1996 No. 4), 355–361.
MR 1472629
[9] Kolibiar, M.:
Intervals, convex sublattices and subdirect representations of lattices. Universal Algebra and Applications, Banach Center Publications, Vol. 9, Warsaw 1982, 335–339.
MR 0738826 |
Zbl 0506.06003
[10] Lihová, J.:
Posets having a selfdual interval poset. Czechoslov. Math. J. 44 (1994), 523–533.
MR 1288170
[11] Lihová, J.:
On posets with isomorphic interval posets. Czechoslov. Math. J. 49 (1999), 67–80.
MR 1676841
[12] Slavík, V.:
On lattices with isomorphic interval lattices. Czechoslov. Math. J. 35 (1985), 550–554.
MR 0809041