Article
Keywords:
Fredholm mapping; generalized BVP; dual problem; bounded nonlinearity; Landesman-Lazer conditions
Summary:
In the paper it is proved that the generalized linear boundary value problem generates a Fredholm operator. Its index depends on the number of boundary conditions. The existence results of Landesman-Lazer type are given as an application to nonlinear problems by using dual generalized boundary value problems.
References:
[1] Grossinho, M. R.:
Some existence result for nonselfadjoint problems at resonance. Contemporary Mathematics 72 (1988), 107–119.
MR 0956482
[2] Hartman, P.:
Ordinary Differential Equations. John Wiley & Sons, New York-London-Sydney, 1964.
MR 0171038 |
Zbl 0125.32102
[3] Landesman, E. M. and Lazer, A. C.:
Nonlinear perturbations of a linear elliptic boundary value problem. J.Math.Mech. 19 (1970), 609–623.
MR 0267269
[4] Mawhin, J.:
Points fixes, points critiques et problemes aux limites. Sémin. math. Sup.no.92, Presses Univ. Montréal, Montréal, 1985.
MR 0789982 |
Zbl 0561.34001
[5] Przeradzki, B.:
Three methods for the study of semilinear equations at resonance. Colloquium Mathematicum 66 (1993), 109–129.
MR 1242650 |
Zbl 0828.47054
[6] Rachůnkov , I.:
An existence theorem of the Leray-Schauder type for four-point boundary value problems. Acta UPO Fac.Rer.Nat. 100 (1991), 49–58.
MR 1166425
[7] Rachůnkov , I.:
Multiplicity results for four-point boundary value problems. Nonlinear Analysis TMA 18 (1992), 497–505.
MR 1152724
[8] Rudolf, B.:
The generalized boundary value problem is a Fredholm mapping of index zero. Archivum Mathematicum 31 (1995), 55–58.
MR 1342375 |
Zbl 0830.34013
[9] Šeda, V.:
Fredholm mappings and the generalized boundary value problem. Differential and Integral Equations 8 (1995), 19–40.
MR 1296108
[10] Šeda, V.:
Generalized boundary value problems and Fredholm mappings. Nonlinear Analysis TMA 30 (1997), 1607–1616.
MR 1490083
[11] Šeda, V.:
Generalized boundary value problems with linear growth. Mathematica Bohemica 123 (1998), 385–404.
MR 1667111
[13] Zeidler, E.:
Applied Functional Analysis. Springer-Verlag, New York Berlin Heidelberg, 1995.
MR 1347692 |
Zbl 0834.46002