Previous |  Up |  Next

Article

Keywords:
variational inequalities; fixed points
Summary:
In this paper generalized quasivariational inequalities on Fréchet spaces are deduced from new fixed point theory of Agarwal and O’Regan [1] and O’Regan [7].
References:
[1] Agarwal R. P., O’Regan D.: Fixed points in Fréchet spaces and variational inequalities. Nonlinear Analysis, to appear.
[2] Aliprantis C. D., Border K. C.: Infinite dimensional analysis. Springer Verlag, Berlin, 1994. MR 1321140 | Zbl 0839.46001
[3] Dien N. H.: Some remarks on variational like and quasivariational like inequalities. Bull. Austral. Math. Soc. 46 (1992), 335–342. MR 1183788 | Zbl 0773.90071
[4] Furi M., Pera P.: A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals. Ann. Polon. Math. 47 (1987), 331–346. MR 0927581 | Zbl 0656.47052
[5] O’Regan D.: Generalized multivalued quasivariational inequalities. Advances Nonlinear Variational Inequalities, 1 (1998), 1–9. MR 1489854
[6] O’Regan D.: Fixed point theory for closed multifunctions. Archivum Mathematicum (Brno) 34 (1998), 191–197. MR 1629701 | Zbl 0914.47054
[7] O’Regan D.: A multiplicity fixed point theorem in Fréchet spaces. to appear. Zbl 0970.47044
[8] Park S.: Fixed points of approximable maps. Proc. Amer. Math. Soc. 124 (1996), 3109–3114. MR 1343717 | Zbl 0860.47042
[9] Park S., Chen M. P.: Generalized quasivariational inequalities. Far East J. Math. Sci. 3 (1995), 199–204. MR 1385120 | Zbl 0942.47053
[10] Su C. H., Sehgal V. M.: Some fixed point theorems for condensing multifunctions in locally convex spaces. Proc. Amer. Math. Soc. 50 (1975), 150–154. MR 0380530 | Zbl 0326.47056
[11] Tan K. K.: Comparison theorems on minimax inequalities, variational inequalities and fixed point theorems. Jour. London Maths. Soc. 28 (1983), 555–562. MR 0724726 | Zbl 0497.49010
[12] Yuan X. Z.: The study of minimax inequalities and applications to economics and variational inequalities. Memoirs of Amer. Maths. Soc. Vol. 625, 1998.
Partner of
EuDML logo