[1] Agarwal R. P., O’Regan D.: Fixed points in Fréchet spaces and variational inequalities. Nonlinear Analysis, to appear.
[2] Aliprantis C. D., Border K. C.:
Infinite dimensional analysis. Springer Verlag, Berlin, 1994.
MR 1321140 |
Zbl 0839.46001
[3] Dien N. H.:
Some remarks on variational like and quasivariational like inequalities. Bull. Austral. Math. Soc. 46 (1992), 335–342.
MR 1183788 |
Zbl 0773.90071
[4] Furi M., Pera P.:
A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals. Ann. Polon. Math. 47 (1987), 331–346.
MR 0927581 |
Zbl 0656.47052
[5] O’Regan D.:
Generalized multivalued quasivariational inequalities. Advances Nonlinear Variational Inequalities, 1 (1998), 1–9.
MR 1489854
[6] O’Regan D.:
Fixed point theory for closed multifunctions. Archivum Mathematicum (Brno) 34 (1998), 191–197.
MR 1629701 |
Zbl 0914.47054
[7] O’Regan D.:
A multiplicity fixed point theorem in Fréchet spaces. to appear.
Zbl 0970.47044
[8] Park S.:
Fixed points of approximable maps. Proc. Amer. Math. Soc. 124 (1996), 3109–3114.
MR 1343717 |
Zbl 0860.47042
[9] Park S., Chen M. P.:
Generalized quasivariational inequalities. Far East J. Math. Sci. 3 (1995), 199–204.
MR 1385120 |
Zbl 0942.47053
[10] Su C. H., Sehgal V. M.:
Some fixed point theorems for condensing multifunctions in locally convex spaces. Proc. Amer. Math. Soc. 50 (1975), 150–154.
MR 0380530 |
Zbl 0326.47056
[11] Tan K. K.:
Comparison theorems on minimax inequalities, variational inequalities and fixed point theorems. Jour. London Maths. Soc. 28 (1983), 555–562.
MR 0724726 |
Zbl 0497.49010
[12] Yuan X. Z.: The study of minimax inequalities and applications to economics and variational inequalities. Memoirs of Amer. Maths. Soc. Vol. 625, 1998.