Previous |  Up |  Next

Article

Keywords:
covariant differentiation; Christoffel symbols
Summary:
We give a method based on an idea of O. Veblen which gives explicit formulas for the covariant derivatives of natural objects in terms of the Christoffel symbols of a symmetric Ehresmann $\varepsilon $-connection.
References:
[1] Birkhof, G. D.: Relativity and Modern Physics. Harvard Press, 1923.
[2] Cartan, E.: Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. C.R. Acad. Sci. Paris 174, 1922, p. 522.
[3] Crittenden, R.: Covariant differentiation. Quart. J. Math. Oxford Ser. 13, 1962, 285-298. MR 0146763 | Zbl 0123.15402
[4] Ehresmann, C.: Sur les connexions d’ordre superieur. Atti del V$^\circ $ Congresso del Unione Mat. Ital., 1955, 344-346.
[5] Eisenhart, L. P.: Riemannian Geometry. Princeton Univ. Press, 1926. MR 1487892 | Zbl 1141.53002
[6] Guillemin, V.: The integrability problem for G-structures. Trans. A.M.S., 116, 1965, 544-560. MR 0203626 | Zbl 0178.55702
[7] Kolář, I.: On the absolute differentiation of geometric object fields. Annales Polonici Mathematici, 1973, 293-304. MR 0326593
[8] Kolář, I., Michor, P., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, Heidelberg, 1993. MR 1202431
[9] Libermann, P.: Connexions d’ordre superieur et tenseurs de structure. Atti del Convegno Internazionale di Geometria Differenziale, Bologna, 1967.
[10] Ortaçgil, E.: Some remarks on the Christoffel symbols of Ehresmann $\varepsilon $-connections. 3$^{rd}$ Meeting on Current Ideas in Mechanics and Related Fields, Segovia (Spain), June 19-23, 1995, Extracta Mathematicae Vol. II, Num. 1, 172–180 (1996). MR 1424754
[11] Ortaçgil, E.: On a differential sequence in geometry. Turkish Journal of Mathematics, 20 (1996), 473–479. MR 1432875
[12] Pommaret, J. F.: Lie Pseudogroups and Mechanics. Gordon and Breach, London, New York, 1988. MR 0954613 | Zbl 0677.58003
[13] Pommaret, J. F.: Partial Differential Equations and Group Theory. Kluwer Academic Publishers, Dordrecht, Boston, London, 1994. MR 1308976 | Zbl 0808.35002
[14] Szybiak, A.: Covariant differentiation of geometric objects. Rozprawy Mat. 56, Warszawa, 1967. MR 0238208 | Zbl 0158.40101
[15] Terng, L.: Natural vector bundles and natural differential operators. American Journal of Math., 100, 1978, 775-828. MR 0509074 | Zbl 0422.58001
[16] Veblen, O.: Normal coordinates for the geometry of paths. Proc. N.A.S., Vol. 8, 1922, p. 192.
[17] Veblen, O., Thomas, T. Y.: The geometry of paths. Transaction of A.M.S., Vol. 25, 1923, 551-608. MR 1501260
[18] Veblen, O.: Invariants of Quadratic Differential Forms. Cambridge Tract 24, University Press, Cambridge, 1927.
[19] Yuen, P. C.: Higher order frames and linear connections. Cahiers de Topologie et Geometrie Diff. 13 (3), 1971, 333-370. MR 0307102 | Zbl 0222.53033
Partner of
EuDML logo