Previous |  Up |  Next

Article

Keywords:
factorsubring; s-unital ring; commutativity; commutator; associative ring
Summary:
Let $m \geq 0, ~r \geq 0, ~s \geq 0, ~q \geq 0$ be fixed integers. Suppose that $R$ is an associative ring with unity $1$ in which for each $x,y \in R$ there exist polynomials $f(X) \in X^{2} \mbox{$Z \hspace{-2.2mm} Z$}[X], ~g(X), ~h(X) \in X \mbox{$Z \hspace{-2.2mm} Z$}[X]$ such that $\{ 1-g (yx^{m}) \} [x, ~x^{r}y ~-~ x^{s}f (y x^{m}) x^{q}] \{ 1-h(yx^{m}) \} ~=~ 0$. Then $R$ is commutative. Further, result is extended to the case when the integral exponents in the above property depend on the choice of $x$ and $y$. Finally, commutativity of one sided s-unital ring is also obtained when $R$ satisfies some related ring properties.
References:
[1] Abujabal H. A. S., Ashraf M.: Some commutativity theorems through a Streb’s classification. Note Mat. 14, No.1 (1994) (to appear). MR 1442008 | Zbl 0879.16019
[2] Ashraf M.: On commutativity of one sided s-unital rings with some polynomial constraints. Indian J. Pure and Appl. Math. 25 (1994), 963-967. MR 1294065 | Zbl 0814.16030
[3] Bell H. E., Quadri M. A., Khan M. A.: Two commutativity theorems for rings. Rad. Mat. 3 (1994), 255-260. MR 0931981
[4] Bell H. E., Quadri M. A., Ashraf M.: Commutativity of rings with some commutator constraints. Rad. Mat. 5 (1989), 223-230. MR 1050891 | Zbl 0697.16031
[5] Chacron M.: A commutativity theorem for rings. Proc. Amer. Math. Soc., 59 (1976), 211-216. MR 0414636 | Zbl 0341.16020
[6] Herstein I. N.: Two remakrs on commutativity of rings. Canad. J. Math. 7 (1955), 411-412. MR 0071405
[7] Hirano Y., Kobayashi Y., Tominaga H.: Some polynomial identities and commutativity of s-unital rings. Math. J. Okayama Univ. 24 (1982), 7-13. MR 0660049 | Zbl 0487.16023
[8] Jacobson N.: Structure theory of algebraic algebras of bounded degree. Ann. Math. 46 (1945), 695-707. MR 0014083
[9] Komatsu H., Tominaga H.: Chacron’s conditions and commutativity theorems. Math. J. Okayama Univ. 31 (1989), 101-120. MR 1043353
[10] Komatsu H., Tominaga H.: Some commutativity theorems for left s-unital rings. Resultate Math. 15 (1989), 335-342. MR 0997069 | Zbl 0678.16027
[11] Komatsu H., Tominaga H.: Some commutativity conditions for rings with unity. Resultate Math. 19 (1991), 83-88. MR 1091958 | Zbl 0776.16017
[12] Komatsu H., Nishinaka T., Tominaga H.: On commutativity of rings. Rad. Math. 6 (1990), 303-311. MR 1096712 | Zbl 0718.16031
[13] Putcha M. S., Yaqub A.: Rings satisfying polynomial constraints. J. Math. Soc., Japan 25 (1973), 115-124. MR 0313312 | Zbl 0242.16017
[14] Quadri M. A., Ashraf M., Khan M. A.: A commutativity condition for semiprime ring-II. Bull. Austral. Math. Soc. 33 (1986), 71-73. MR 0823854
[15] Quadri M. A., Ashraf M.: Commutativity of generalized Boolean rings. Publ. Math. (Debrecen) 35 (1988), 73-75. MR 0971954 | Zbl 0657.16020
[16] Quadri M. A., Khan M. A., Asma Ali: A commutativity theorem for rings with unity. Soochow J. Math. 15 (1989), 217-227. MR 1045165
[17] Searcoid M. O., MacHale D.: Two elementary generalizations for Boolean rings. Amer. Math. Monthly 93 (1986), 121-122. MR 0827587
[18] Streb W.: Zur struktur nichtkommutativer Ringe. Math. J. Okayama Univ. 31 (1989), 135-140. MR 1043356 | Zbl 0702.16022
[19] Tominaga H., Yaqub A.: Commutativity theorems for rings with constraints involving a commutative subset. Resultate Math. 11 (1987), 186-192. MR 0880201
Partner of
EuDML logo