Previous |  Up |  Next

Article

Keywords:
Cosserat media; rods; shells; uniformity; homogeneity; non-holonomic frame bundles; non-holonomic G-structures; connections
Summary:
We present a general geometrical theory of uniform bodies which includes three-dimensional Cosserat bodies, rods and shells as particular cases. Criteria of local homogeneity are given in terms on connections.
References:
[1] S.S. Antman: Nonlinear Problems of Elasticity. Applied Math. Sci. 107, Springer-Verlag, New York, 1995. MR 1323857 | Zbl 0820.73002
[2] G. Capriz: Continua with Microstructure. Springer Tracts in Natural Philosophy, 35, 1989. MR 0985585 | Zbl 0676.73001
[3] H. Cohen C.N. DeSilva: Nonlinear Theory of Elastic Directed Surfaces. J. Math. Phys. 7 (6) (1967), 960-966.
[4] L.A. Cordero C.T.J. Dodson M. de León: Differential Geometry of Frame Bundles. Mathematics and Its Applications, Kluwer, Dordrecht, 1989.
[5] E. Cosserat F. Cosserat: Théorie des corps Déformables. Hermann, Paris, 1909.
[6] M. de León M. Epstein: On the integrability of second order $G$-structures with applications to continuous theories of dislocations. Reports on Mathematical Physics, 33 (3) (1993), 419-436. MR 1277160
[7] M. de León M. Epstein: Material bodies of higher grade. C. R. Acad. Sc. Paris, 319, Sér. I, (1994), 615-620. MR 1298293
[8] M. de León M. Epstein: The geometry of uniformity in second-grade elasticity. Acta Mechanica, 114 1 (1996), 217-224. MR 1375732
[9] M. de León P.R. Rodrigues: Methods of Differential Geometry in Analytical Mechanics. North-Holland Math. Ser. 152, Amsterdam, 1989. MR 1021489
[10] M. Elzanowski M. Epstein: On the symmetry group of second-grade materials. Int. J. Non-Linear Mechanics, 27, 4 (1992), 635-638. MR 1175083
[11] M. Elzanowski S. Prishepionok: Locally Homogeneous Configurations of Uniform Elastic Bodies. Reports on Mathematical Physics, 31 (1992), 229-240. MR 1232644
[12] M. Elzanowski S. Prishepionok: Connections on higher order frame bundles. Proceedings Colloquium on Differential Geometry, July 25-30, 1994, Debrecen, Hungary.
[13] M. Elzanowski: Mathematical Theory of Uniform Elastic Structures. Monografie, Politechnika Swietokrzyska, Kielce, 1995.
[14] M. Epstein M. de León: The Differential Geometry of Cosserat Media. New Developments in Differential Geometry (Debrecen, 1994), Math. Appl., 350, Kluwer Acad. Publ., Dordrecht, 1996, pp. 143-164. MR 1377280
[15] M. Epstein M. de León: Homogeneity conditions for generalized Cosserat media. Journal of Elasticity, 43 (1996), 180-201. MR 1415542
[16] M. Epstein M. de León: Differential geometry of continua with structure. Proceedings 8th International Symposium “Continuum Models and Discrete Systems”, Varna, Bulgaria, June 11-16, 1995. World Scientific, Singapore, 1996, pp. 156-163.
[17] M. Epstein M. de León: Geometric characterization of the homogeneity of continua with microstructure. Proceedings Third Meeting on Current Ideas in Mechanics and Related Fields, Segovia, June 19-23, 1995. Extracta Mathematicae 11 (1) (1996), pp. 116-126. MR 1424749
[18] M. Epstein M. de León: Geometrical Theory of Uniform Cosserat Media. Preprint IMAFF-CSIC, 1996.
[19] M. Epstein M. de León: Shell theory and material uniformity. V Pan American Congress of Applied Mechanics, Mayagüez, Puerto Rico, January 2-6, 1997.
[20] M. Epstein M. de León: Uniformity and homogeneity of deformable surfaces. to appear in C. R. Acad. Sci. Paris, (1996). MR 1375733
[21] M. Epstein M. de León: On uniformity of shells. Preprint IMAFF-CSIC, 1996. MR 1375733
[22] J.L. Ericksen: Uniformity in Shells. Arch. Rational Mech. Anal. 37 (1970) 73-84. MR 1553543 | Zbl 0194.57204
[23] J.L. Ericksen: Symmetry transformations for thin elastic shells. Arch. Rational Mech. Anal. 47 (1972) 1-14. MR 0359504 | Zbl 0242.73045
[24] A.C. Eringen, Ch.B. Kafadar: Polar Field Theories. Continuum Physics, Ed. A. Cemal Eringen, vol. IV, Part I, pp. 1-73, Academic Press, New York, 1976. MR 0468445
[25] A. Fujimoto: Theory of $G$-structures. Publications of the Study Group of Geometry, Vol. I. Tokyo, 1972. MR 0348664 | Zbl 0235.53035
[26] A.E. Green P.M. Naghdi W.L. Wainwright: A General Theory of a Cosserat Surface. Arch. Rational Mech. Anal. 20 (1965) 287-308. MR 0183156
[27] A.E. Green P.M. Naghdi: Some remarks on the linear theory of shells. Q. J. Mech. Appl. Math. 18 (1965) 257-276. MR 0189334
[28] S. Kobayashi K. Nomizu: Foundations of Differential Geometry. vol. I, Interscience Publishers, New York, 1963. MR 0152974
[29] I. Kolář: Generalized $G$-structures and $G$-structures of higher order. Boll. Un. Mat. Ital. (4) 12, no. 3, suppl (1975), 245-256. MR 0445424
[30] I. Kolář P.W. Michor J. Slovák: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. MR 1202431
[31] I. Kolář: Canonical forms on the prolongations of principal fibre bundles. Rev. Roumaine Math. Pures Appl. 16 (1971), 1091-1106. MR 0301668
[32] P. Libermann: Sur la géométrie des prolongements des spaces fibrés vectoriels. Ann. Inst. Fourier, 14 (1) (1964), 145-172. MR 0167925
[33] P. Libermann: Surconnexions et connexions affines spéciales. C. R. Acad. Sc. Paris, 261 (1965), 2801-2804. MR 0190869 | Zbl 0129.36603
[34] P. Libermann: Connexions d’ordre supérieur et tenseur de structure. Atti del Convegno Int. di Geometria Differenziale, Bologna, 28-30, September 1967, Ed. Zanichelli, Bologna, 1967, 1-18.
[35] P. Libermann: Sur les groupoides différentiables et le “presque parallelisme”. Instituto Nazionale di Alta Matematica, Symposia Mathematica, X (1972), 59-93. MR 0370668 | Zbl 0265.53030
[36] P. Libermann: Parallélismes. J. Differential Geometry, 8 (1973), 511-539. MR 0353189 | Zbl 0284.53023
[37] J.E. Marsden: Lectures on Geometric Methods in Mathematical Physics. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1981. MR 0619693 | Zbl 0485.70001
[38] J.E. Marsden T.J.R. Hughes: Mathematical Foundations of Elasticity. Prentice Hall, New Jersey, 1983.
[39] G.A. Maugin: The Method of Virtual Power in Continuum Mechanics-Applications to Coupled Fields. Acta Mechanica, 30 (1980), 1-70. MR 0563729
[40] G.A. Maugin: Material Inhomogeneities in Elasticity. Chapman & Hall, London, 1993. MR 1250832 | Zbl 0797.73001
[41] G.A. Maugin: On the Structure of the Theory of Polar Elasticity. Preprint 1996. MR 1639983
[42] P. Molino: Théorie des $G$-Structures: Le Probléme d’Equivalence. Lecture Notes in Math., 588, Berlin-New York, Springer, 1977. MR 0517117 | Zbl 0357.53022
[43] W. Noll: Materially Uniform Simple Bodies with Inhomogeneities. Arch. Rational Mech. Anal., 27, (1967), 1-32. MR 0225530
[44] V. Oproiu: Connections in the semiholonomic frame bundle of second order. Rev. Roum. Math. Pures et Appl., XIV, 5 (1969), 661-672. MR 0248671 | Zbl 0182.24104
[45] J.F. Pommaret: Lie Pseudogroups and Mechanics. Mathematics and Its Applications, Gordon and Breach, New York, 1988. MR 0954613 | Zbl 0677.58003
[46] R.A. Toupin: Elastic materials with couple-stresses. Arch. Rational Mech. Anal. 11, (1962), 385-414. MR 0144512 | Zbl 0112.16805
[47] R.A. Toupin: Theories of Elasticity with Couple-stress. Arch. Rational Mech. Anal. 17, (1964), 85-112. MR 0169425 | Zbl 0131.22001
[48] C. Truesdell W. Noll: The Non-Linear Field Theories of Mechanics. Handbuch der Physik, Vol. III/3, Berlin-New York, Springer, 1965. MR 0193816
[49] C.C. Wang C. Truesdell: Introduction to rational elasticity. Noordhoff International Publishing, Leyden, 1973. MR 0468442
[50] C.C. Wang: On the Geometric Structures of Simple Bodies, a Mathematical Foundation for the Theory of Continuous Distributions of Dislocations. Arch. Rational Mech. Anal., 27, (1967), 33-94. MR 0229420 | Zbl 0187.48802
[51] C.C. Wang: Material Uniformity and Homogeneity in Shells. Arch. Rational Mech. Anal. 47 (1972) 343-368. MR 0359505 | Zbl 0266.73054
[52] P.Ch. Yuen: Higher order frames and linear connections. Cahiers de Topologie et Géometrie Différentielle, XII, 3 (1971), 333-371. MR 0307102 | Zbl 0222.53033
Partner of
EuDML logo