Article
Keywords:
confluent; connected; continuum; joining; mapping; monotone; pseudo-confluent; quasi-component; semi-confluent; weakly confluent
Summary:
Necessary and sufficient conditions are found in the paper for a mapping between continua to be monotone, confluent, semi-confluent, joining, weakly confluent and pseudo-confluent. Three lists of these conditions are presented. Two are formulated in terms of components and of quasi-components, respectively, of connected closed subsets of the range space, while the third one in terms of connectedness between subsets of the domain space. Some basic relations concerning these concepts are studied.
References:
[G] Grispolakis, J.:
Confluent and related mappings defined by means of quasi-components. Canad. J. Math. 30 (1978), 112-132.
MR 0481172 |
Zbl 0376.54004
[HY] Hocking, J. G., Young, G. S.:
Topology. Addison-Wesley, 1961.
MR 0125557
[K] Kuratowski, K.:
Topology. vol. 2, Academic Press and PWN, 1968.
Zbl 0849.01044
[L2] Lelek, A.:
A classification of mappings pertinent to curve theory. in: Proceedings Univ. Oklahoma Topology Conference 1972, Norman, Oklahoma 1972, 97-103.
MR 0358667 |
Zbl 0252.54019
[L3] Lelek, A.:
Properties of mappings and continua theory. Rocky Mountain J. Math. 6 (1976), 47-59.
MR 0390996 |
Zbl 0326.54024
[LT] Lelek, A., Tymchatyn, E. D.:
Pseudo-confluent mappings and a classification of continua. Canad. J. Math. 27 (1975), 1336-1348.
MR 0418022
[M] Maćkowiak, T.:
Continuous mappings on continua. Dissertationes Math. (Rozprawy Mat.) 158 (1979), 1-91.
MR 0522934
[W] Whyburn, G. T.:
Analytic topology. Amer. Math. Soc. Colloq. Publ. 28 (1942).
Zbl 0061.39301