Previous |  Up |  Next

Article

Title: Some natural operators on vector fields (English)
Author: Tomáš, Jiří
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 31
Issue: 3
Year: 1995
Pages: 239-249
Summary lang: English
.
Category: math
.
Summary: We determine all natural operators transforming vector fields on a manifold $M$ to vector fields on $T^*T^2_1M$, $\operatorname{dim}M \ge 2$, and all natural operators transforming vector fields on $M$ to functions on $T^*TT^2_1M$, $\operatorname{dim}M \ge 3$. We describe some relations between these two kinds of natural operators. (English)
Keyword: vector field
Keyword: natural bundle
Keyword: natural operator
Keyword: Weil bundle
MSC: 53A55
MSC: 58A20
idZBL: Zbl 0844.58007
idMR: MR1368261
.
Date available: 2008-06-06T21:29:06Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107543
.
Reference: [1] Cantrijn, F., Crampin, M., Sarlet, W. and Saunders, D.: The canonical isomorphism between $T^kT^*M$ and $T^*T^kM$.C. R. Acad. Sci. Paris 309 (1989), 1509-1514. MR 1033091
Reference: [2] Kobak, P.: Natural liftings of vector fields to tangent bundles of $1$-forms.Mathematica Bohemica 116 (1991), 319-326. MR 1126453
Reference: [3] Kolář, I.: Covariant Approach to Natural Transformations of Weil Bundles.Comment. Math. Univ. Carolinae (1986). MR 0874666
Reference: [4] Kolář, I.: On Cotagent Bundles of Some Natural Bundles.to appear in Rendiconti del Circolo Matematico di Palermo. MR 1344006
Reference: [5] Kolář, I.: On the Natural Operators on Vector Fields.Ann. Global Anal. Geometry 6 (1988), 109-117. MR 0982760
Reference: [6] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer – Verlag, 1993. MR 1202431
Reference: [7] Kolář, I., Radziszewski, Z.: Natural Transformations of Second Tangent and Cotangent Bundles.Czechoslovak Math. (1988), 274-279. MR 0946296
Reference: [8] Modugno, M., Stefani, G.: Some results on second tangent and cotangent spaces.Quaderni dell’Università di Lecce (1978).
.

Files

Files Size Format View
ArchMathRetro_031-1995-3_7.pdf 289.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo