[1] Ahlbrandt, C.D., Hinton, D.B., Lewis, R.T.:
The effect of variable change on oscillation and disconjugacy criteria with application to spectral theory and asymptotic theory. J. Math. Anal. Appl. 81 (1981), 234-277.
MR 0618771
[3] Coppel, W. A.: Disconjugacy, Lecture Notes in Math. No 220, Springer Verlag, Berlin-Heidelberg 1971.
MR 0460785 |
Zbl 1145.11002
[4] Došlý, O.:
The existence of conjugate points for self-adjoint linear differential equations. Proc. Roy. Soc. Edinburgh 113A (1989), 73-85.
MR 1025455
[5] Došlý, O.:
Oscillation criteria and discreteness of the spectrum of self-adjoint, even order, differential operators. Proc. Roy. Soc. Edinburgh 119A (1991), 219-231.
MR 1135970
[6] Došlý, O., Osička, J.:
Kneser-type oscillation criteria for self-adjoint two-term differential equations. Georgian Math. J. 2 (1995), 241-259.
MR 1334880
[7] Glazman, I. M.: Direct Methods of Qualitative Analysis of Singular Differential Operators, Jerusalem 1965.
Zbl 1159.82319
[8] Hawking, S. W., Penrose, R.:
The singularities of gravity collapse and cosmology. Proc. Roy. Soc. London A314 (1970), 529-548.
MR 0264959
[9] Müller-Pfeiffer, E.:
Existence of conjugate points for second and fourth order differential equations. Proc. Roy. Soc. Edinburgh 89A (1981), 281-91.
MR 0635764
[10] Müller-Pfeiffer, E.:
An oscillation theorem for self- adjoint differential equations. Math. Nachr. 108 (1982), 79-92.
MR 0695118
[11] Müller-Pfeiffer, E.:
Nodal Domains for One- and Two- Dimensional Elliptic Differential Equations. Z. Anal. Anwendungen 7 (1988), 135-139.
MR 0951346
[12] Reid, W. T.: Sturmian Theory for Ordinary Differential Equations, Acad. Press, New-York 1980.
MR 0606199 |
Zbl 1168.83300
[13] Tipler, F. J.:
General relativity and conjugate ordinary differential equations. J. Diff. Equations 30 (1978), 165-174.
MR 0513268 |
Zbl 0362.34023