Previous |  Up |  Next

Article

Keywords:
Comparison theorem; property (A)..
Summary:
In this paper property (A) of the linear delay differential equation \[ L_nu(t)+p(t)u(\tau (t))= 0, \] is to deduce from the oscillation of a set of the first order delay differential equations.
References:
[1] Chanturia, T. A., Koplatadze, R. G.: On the oscillatory and monotone solutions of the first order differential equations with deviating argument. Dif. Uravnenija 18 (1982), 1463–1465. (Russian) MR 0671174
[2] Džurina, J.: Comparison theorems for ODEs. Math. Slovaca 42 (1992), 299–315. MR 1182960
[3] Győri, I., Ladas, G.: Oscillation theory of delay differential equations. Clarendon press, Oxford, 1991. MR 1168471
[4] Kiguradze, I. T.: On the oscillation of solutions of the equation $d^mu/dt^m + a(t)|u|^n sign\,u = 0$. Mat. Sb 65 (1964), 172–187. (Russian) MR 0173060 | Zbl 0135.14302
[5] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Japan 3 (1981), 509–532. MR 0620288
[6] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation theory of differential equations with deviating arguments. Dekker, New York, 1987. MR 1017244
[7] Mihal¡kov , B., Šoltés, P.: Oscillations of differential equation with retarded argument. Math. Slovaca 38 (1985), 295–303. MR 0808365
Partner of
EuDML logo