Previous |  Up |  Next

Article

Keywords:
property (A); degree of solution
Summary:
The equation to be considered is \[ L_ny(t)+p(t)y(\tau (t))=0. \] The aim of this paper is to derive sufficient conditions for property (A) of this equation.
References:
[1] Džurina, J.: Comparison theorems for nonlinear ODE’s. Math. Slovaca 42 (1992), 299–315. MR 1182960
[2] Džurina, J.: Property (A) of third-order differential equations with deviating argument. Math. Slovaca 44 (1994). MR 1281030
[3] Foster, K. E., Grimmer, R. C.: Nonoscillatory solutions of higher order differential equations. J. Math. Anal. Appl. 71 (1979), 1–17. MR 0545858
[4] Kiguradze, I.: On the oscillation of solutions of the equation $d^mu/dt^m + a(t)|u|^n sign\,u = 0$. Mat. Sb 65 (1964), 172–187. (Russian) MR 0173060 | Zbl 0135.14302
[5] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Japan 3 (1981), 509–532. MR 0620288
[6] Naito, M.: On strong oscillation of retarded differential equations. Hiroshima Math. J. 11 (1981), 553–560. MR 0635038 | Zbl 0512.34056
[7] Šeda, V.: Nonoscillatory solutions of differential equations with deviating argument. Czech. Math. J. 36 (1986), 93–107. MR 0822871
[8] Škerlík, A.: Oscillation theorems for third order nonlinear differential equations. Math. Slovaca 42 (1992), 471–484. MR 1195041
Partner of
EuDML logo